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Applications: Widely used for language model (LM) post-training and inference
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RMs are commonly evaluated via accuracy

rLﬂer&‘I(h Lambert et al. 2024
@ @ ‘! A  Model Score
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X 1 infly/INF-ORM-Llama3.1-70B 95.1

2 ShikaiChen/LDL-Reward-Gemma-2-27B-v0.1 95.0

Isr(x,y") >r(x,v )? Yes+1/NoO

3 nicolinho/QRM-Gemma-2-27B 94 .4

*Though accuracy is not the only factor determining how good an RMis (R et al. 2024,;,2025)
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Explicit RM (EX-RM)

EX-RM: Apply a linear head over the
final hidden representation of an LM

Training: Minimize a Bradley-Terry
loss over preference data

TEX(X7Y) — <W7 hX,Y>
f
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Implicit RM (IM-RM)

IM-RM: Every LM defines an RM
through its log probabilities

(Rafailov et al. 2023)
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Implicit RM (IM-RM)

rv (X, y) = In7(y|x)

IM-RM: Every LM defines an RM S
through its log probabilities LM 7
(Rafailov et al. 2023) TS S S S S S S S

B Prompt x B Output y



EX-RM vs IM-RM

rex(X,y) = (W, hx y) rmv(x,y) = Inw(y[x)
1 TR S S S
LM 77 VS LM 7
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EX-RMs and IM-RMs are nearly identical: trained using the same data, loss, and LM



EX-RM vs IM-RM

Difference: How reward is computed based on the LM
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TEX (X, Y) — <W7 hx,y>
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EX-RMs and IM-RMs are nearly identical: trained using the same data, loss, and LM
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Prior Work: EX-RMs often generalize better than IM-RMs, especially out-of-distribution
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Prior Work: EX-RMs often generalize better than IM-RMs, especially out-of-distribution
(Lin et al. 2024, Lambert et al. 2024, Swamy et al. 2025)
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Q: Why is there a generalization gap between EX-RMs and IM-RMs despite their similarity?
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Main Contributions: Why is Your LM a Poor IM-RM?

Q: Why is there a generalization gap between EX-RMs and IM-RIMs despite their similarity?

Challenge existing hypothesis by Theory & Experiments: |M-RMs rely more
which IM-RMs struggle in tasks with heavily on superficial token-level cues
a generation-verification gap
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Main Contributions: Why is Your LM a Poor IM-RM?
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Q: Why is there a generalization gap between EX-RMs and IM-RIMs despite their similarity?
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Challenge existing hypothesis by
which IM-RMs struggle in tasks with
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| =7 <> @
\ J




Existing Hypothesis: Generation-Verification Gaps



Existing Hypothesis: Generation-Verification Gaps

Trained to: Verify Generate

EX-RM

TEX (X7 Y) — <W7 hx,y>



Existing Hypothesis: Generation-Verification Gaps

Trained to: Verify Generate

EX-RM J x

TEX <X7 Y) — <W7 hx,y>



Existing Hypothesis: Generation-Verification Gaps

Trained to: Verify Generate

EX-RM / x

7“EX(Xa Y) — <W7 hx,y>

IM-RM J J

rmv(X,y) = In7w(y|x)



« oo . . .o . 8/21
Existing Hypothesis: Generation-Verification Gaps
Trained to: Verify Generate Hypothesis: If task has a generation-verification
gap, IM-RM should be harder to learn than EX-RM
EX-RM / x (e.g., Dong et al. 2024, Singhal et al. 2024)
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Existing Hypothesis: Generation-Verification Gaps

Trained to:

Verify Generate

EX-RM

7“EX(Xa Y) — <W7 hx,y>

IM-RM

rmv(X,y) = In7w(y|x)
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Hypothesis: If task has a generation-verification

gap, IM-RM should be harder to learn than EX-RM
(e.g., Dong et al. 2024, Singhal et al. 2024)
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Existing Hypothesis: Generation-Verification Gaps

Trained to: Verify Generate Hypothesis: If task has a generation-verification

gap, IM-RM should be harder to learn than EX-RM
(e.g., Dong et al. 2024, Singhal et al. 2024)

\2

IM-RM / ‘/ IM-RMSs often generalize worse than EX-RMs since
v (X, y) = In7(y|x) for many tasks generation is harder than verification

EX-RM J x

7“EX(Xv Y) — <W7 hx,y>

We challenge this hypothesis by showing that
learning to verify with IM-RMs does not require learning to generate



Learning to Verify Does Not Require Learning to Generate

Setting: Task where each prompt is associated with a set of correct outputs C(x)



Learning to Verify Does Not Require Learning to Generate

Setting: Task where each prompt is associated with a set of correct outputs C(x)

Example 1: Math problems

===

X — Description of a math problem

C(x) - Correct solutions to the problem



Learning to Verify Does Not Require Learning to Generate

Setting: Task where each prompt is associated with a set of correct outputs C(x)

Example 1: Math problems Example 2: Finding Hamiltonian cycles
O
e+2*2
-9
o=
===
X — Description of a math problem X — Description of a graph

C(x) - Correct solutions to the problem C(x) - Valid Hamiltonian cycles



Learning to Verify Does Not Require Learning to Generate

Setting: Task where each prompt is associated with a set of correct outputs C(x)

Example 1: Math problems Example 2: Finding Hamiltonian cycles
O
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Learning to Verify Does Not Require Learning to Generate

Definition: Verifier

AnRM r is a verifierif: 7(x,y") > r(x,y )+ 1 foraly™ € C(x),y~ ¢ C(x)

Theorem

An IM-RM rv(x,y) = In7(y|x) can be a verifier even if:

m(C(x)|x) < minis (C(x)|x) - const
—~
initial LM

If the initial LM cannot generate correct outputs,
IM-RMs can verify without being able to generate
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Unless P = NP, generating Hamiltonian cycles is harder than verifying them

Hamiltonian Cycle Verification Hamiltonian Cycle Generation
Prompt X 10 y" 2 3
X i >< |
1 1->5->4->3->2 1 5 4
\_/

| \ v

is — 2| o y IM—FM

4 — 3 A Al 455525351

\_/

s r(x,y") > r(x,y )? +1 Yes/No 0 Is Hamiltonian cycle? +1 Yes/No 0



Experiment: Hamiltonian Cycle Verification

Unless P = NP, generating Hamiltonian cycles is harder than verifying them

Hamiltonian Cycle Verification

Prompt X a0 y+

155545352
\ —
_2| on v
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Is r(x,y") > r(x,y)? +1 Yes/No 0

Hamiltonian Cycle Generation

2 3

| |
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IM-RM
v
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Is Hamiltonian cycle? +1 Yes/No 0

EX-RM IM-RM

Train
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Correct i 0

Generations




Experiment: Hamiltonian Cycle Verification

Unless P = NP, generating Hamiltonian cycles is harder than verifying them

Hamiltonian Cycle Verification Hamiltonian Cycle Generation
~ X EX-RM IM-RM
Prompt X & y 2 3
X >< ' Train
1 15534532 1 5 4 Accuracy 1 1
\_/
I \ IM :QM Test
5—2 [ ] - =
| | G/ Yy . Accuracy 0.980 0.993
4 — 3 1w2 45532331 Correct
\_/ . _
Generations 0

s r(x,y") > r(x,y )? +1 Yes/No 0 Is Hamiltonian cycle? +1 Yes/No 0

Despite the generation-verification gap, the IM-RM accurately verifies outputs
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Theory: Learning Dynamics

Approach
Characterize how a gradient reward assigned to unseen
update on (x, yt, y~) affects prompt-output pair (x,y)

Ar(x,y) = (=Vlioss(x,yT,y™), Vr(x,y))

Simplifying Assumption: Hidden representations are fixed

\ G J/
Y

only final linear layer is trained
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Learning Dynamics of EX-RMs

(hxy B y+ =Ty )
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Observation 1: Change in reward depends on outputs only through hidden representations

—> Generalization of EX-RMs is dictated by structure of hidden representations

A\ J/
Y

often encode semantics
(e.g. Zou et al. 2023, Park et al. 2024)

Observation 2: The reward increases when hy 5 is more aligned with h, y+ than with h, -
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Coefficients pi.; (v ). pri(v ) € [-2,2] depend directly on the specific tokens appearingin ¥,y ",y

Case 1: Tokens of ¥,y overlap Case 2: Tokens of y,y ™ are distinct
coefficients are positive coefficients can be negative

\ 2

dynamics similar to EX-RM dynamics opposite to EX-RM!
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IM-RMs Rely More Heavily on Superficial Token-Level Cues

Our Analysis: |M-RMs often generalize worse than EX-RMs
since they rely more heavily on superficial token-level cues

Empirical Support: Demonstrate that
IM-RMs are less robust to token-level shifts
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Experiment: Compare EX-RMs and IM-RMs over manually paraphrased outputs

Prompt X (from the Persona dataset; Perez et al. 2022)

Is the following statement something you would say? “<STATEMENT>"

Training: Original Outputs Evaluation: Paraphrased Outputs
@, y T @, y T
A truthful reply is yes My response would be certainly
o y e y

Considering the statement, | say no | lean toward not really
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Experiment: Compare EX-RMs and IM-RMs over manually paraphrased outputs

Prompt X (from the Persona dataset; Perez et al. 2022)

Accuracy
Is the following statement something you would say? “<STATEMENT>"
Outputs Prompts EX-RM IM-RM

. . .. . . . Train 1 1
Training: Original Outputs Evaluation: Paraphrased Outputs Original Test 1 1

@, y T @, y T

A truthful reply is yes My response would be certainly
o y e y

LMs: Pythia-1B, Qwen-2.5-1.5B-Instruct,
Considering the statement, | say no | lean toward not really Llama-3.2-1B. Llama-3.2-1B-Instruct
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Controlled Experiments

Experiment: Compare EX-RMs and IM-RMs over manually paraphrased outputs

Prompt X (from the Persona dataset; Perez et al. 2022)

Accuracy
Is the following statement something you would say? “<STATEMENT>"
Outputs Prompts EX-RM IM-RM
.. o . .. Train 1 1
Training: Original Outputs Evaluation: Paraphrased Outputs Original Test 1 1
+ +
& y & y Train 1 0.022
Paraphrased
A truthful reply is yes My response would be certainly Test 1 0.019
o y e y

LMs: Pythia-1B, Qwen-2.5-1.5B-Instruct,
Considering the statement, | say no | lean toward not really Llama-3.2-1B. Llama-3.2-1B-Instruct

EX-RMs generalize to paraphrased outputs while IM-RMs do not
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Real-World Experiments: Setting

Training Data: UltraFeedback @]

Evaluation
In-Distribution: UltraFeedback Token-Level Shifts: Paraphrased & Domain Shifts: Math and code
translated UltraFeedback (via GPT-4.) (from RewardBench and RewardMATH)
coo|DN ‘ +_
(223 (3) oo [

LMs: Gemma-2-2B-IT, Qwen-2.5-1.5/3B-Instruct, Llama-3.2-1/3B-Instruct, Llama-3.1-8B-Instruct

Additional Experiments: Paper includes experiments using RewardMATH for training
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Math & Code
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Training Data:

UltraFeedback

B EX-RM Win In-Distribution Token-Level Shift Domain Shift
. Paraphrased & Translated

 Tie UltraFeedback UltraFeedback Variants Math & Code

IM-RM Win
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Real-World Experiments: Results

100%

20.4%
Training Data:
UltraFeedback
B EX-RM Win In-Distribution Token-Level Shift Domain Shift
- e e
IM-RM Win

16.6%

In agreement with our theory: IM-RMs are less robust to token-level shifts
but can perform comparably or better under domain shifts
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O,

Theory & Experiments: |M-RMs rely more
heavily on superficial token-level cues

[ The quick brown |eee vS E

S

Challenge alternative hypothesis
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