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Reward Models (RMs)

Reinforcement Learning Preference Labeling Data Curation Inference

Applications: Widely used for language model (LM) post-training and inference
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*Though accuracy is not the only factor determining how good an RM is (R et al. 2024;2025)
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Explicit RM (EX-RM)

EX-RM: Apply a linear head over the 
final hidden representation of an LM 

Training: Minimize a Bradley-Terry 
loss over preference data
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vs

5 / 21



Generalization Gap

Prior Work: EX-RMs often generalize better than IM-RMs, especially out-of-distribution
(Lin et al. 2024, Lambert et al. 2024, Swamy et al. 2025)

6 / 21



Generalization Gap

Prior Work: EX-RMs often generalize better than IM-RMs, especially out-of-distribution
(Lin et al. 2024, Lambert et al. 2024, Swamy et al. 2025)

Highest ranking IM-RM

6 / 21



Generalization Gap

(Lin et al. 2024, Lambert et al. 2024, Swamy et al. 2025)

Highest ranking IM-RM

Q: Why is there a generalization gap between EX-RMs and IM-RMs despite their similarity?

6 / 21

Prior Work: EX-RMs often generalize better than IM-RMs, especially out-of-distribution



Main Contributions: Why is Your LM a Poor IM-RM?

Q: Why is there a generalization gap between EX-RMs and IM-RMs despite their similarity?

7 / 21



Main Contributions: Why is Your LM a Poor IM-RM?

Q: Why is there a generalization gap between EX-RMs and IM-RMs despite their similarity?

7 / 21

Challenge existing hypothesis by 
which IM-RMs struggle in tasks with 
a generation-verification gap



Main Contributions: Why is Your LM a Poor IM-RM?

Q: Why is there a generalization gap between EX-RMs and IM-RMs despite their similarity?

Theory & Experiments: IM-RMs rely more 
heavily on superficial token-level cues

vs

7 / 21

Challenge existing hypothesis by 
which IM-RMs struggle in tasks with 
a generation-verification gap



Main Contributions: Why is Your LM a Poor IM-RM?

Q: Why is there a generalization gap between EX-RMs and IM-RMs despite their similarity?

Theory & Experiments: IM-RMs rely more 
heavily on superficial token-level cues

vs

7 / 21

Challenge existing hypothesis by 
which IM-RMs struggle in tasks with 
a generation-verification gap



Existing Hypothesis: Generation-Verification Gaps
8 / 21



Existing Hypothesis: Generation-Verification Gaps

EX-RM

Verify GenerateTrained to:

8 / 21



Existing Hypothesis: Generation-Verification Gaps

EX-RM

Verify GenerateTrained to:

8 / 21



Existing Hypothesis: Generation-Verification Gaps

EX-RM

IM-RM

Verify GenerateTrained to:

8 / 21



Existing Hypothesis: Generation-Verification Gaps

Hypothesis: If task has a generation-verification 
gap, IM-RM should be harder to learn than EX-RM
(e.g., Dong et al. 2024, Singhal et al. 2024)

8 / 21

EX-RM

IM-RM

Verify GenerateTrained to:



Existing Hypothesis: Generation-Verification Gaps

Hypothesis: If task has a generation-verification 
gap, IM-RM should be harder to learn than EX-RM
(e.g., Dong et al. 2024, Singhal et al. 2024)

IM-RMs often generalize worse than EX-RMs since 
for many tasks generation is harder than verification

8 / 21

EX-RM

IM-RM

Verify GenerateTrained to:



Existing Hypothesis: Generation-Verification Gaps

We challenge this hypothesis by showing that 
learning to verify with IM-RMs does not require learning to generate

Hypothesis: If task has a generation-verification 
gap, IM-RM should be harder to learn than EX-RM
(e.g., Dong et al. 2024, Singhal et al. 2024)
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An RM     is a verifier if:                                                      for all                              

Definition: Verifier

initial LM

If the initial LM cannot generate correct outputs, 
IM-RMs can verify without being able to generate
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Experiment: Hamiltonian Cycle Verification

Despite the generation-verification gap, the IM-RM accurately verifies outputs

Unless P = NP, generating Hamiltonian cycles is harder than verifying them
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Approach

Theory: Learning Dynamics

Simplifying Assumption: Hidden representations are fixed 

reward assigned to unseen 
prompt-output pair 

Characterize how a gradient 
update on affects

only final linear layer is trained
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hidden representations

Observation 1: Change in reward depends on outputs only through hidden representations

Observation 2: The reward increases when           is more aligned with            than with 

Generalization of EX-RMs is dictated by structure of hidden representations

often encode semantics
(e.g. Zou et al. 2023, Park et al. 2024)
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Coefficients                                                    depend directly on the specific tokens appearing in

Case 1: Tokens of            overlap Case 2: Tokens of            are distinct

coefficients are positive

dynamics similar to EX-RM

coefficients can be negative

dynamics opposite to EX-RM!
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Controlled Experiments

Experiment: Compare EX-RMs and IM-RMs over manually paraphrased outputs

EX-RMs generalize to paraphrased outputs while IM-RMs do not
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LMs: Pythia-1B, Qwen-2.5-1.5B-Instruct, 
Llama-3.2-1B, Llama-3.2-1B-Instruct
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Evaluation

Real-World Experiments: Setting
18 / 21

Training Data: UltraFeedback

LMs: Gemma-2-2B-IT, Qwen-2.5-1.5/3B-Instruct, Llama-3.2-1/3B-Instruct, Llama-3.1-8B-Instruct

Additional Experiments: Paper includes experiments using RewardMATH for training

In-Distribution: UltraFeedback Token-Level Shifts: Paraphrased & 
translated UltraFeedback (via GPT-4.1)

Domain Shifts: Math and code 
(from RewardBench and RewardMATH)
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In agreement with our theory: IM-RMs are less robust to token-level shifts 
but can perform comparably or better under domain shifts
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Takeaway 1

Our results shed light on why often
EX-RM + RL >> DPO (IM-RM)

Takeaway 2
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Seemingly minor design choices can 
substantially affect RM generalization
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RM type RM properties Performance of LM
affects affects

Thank You!
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