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Limitation of SFT:

Hard to formalize human preferences through labels

prompt x desired response y

Wei et al. 2022, Chung et al. 2022, Ouyang et al. 2022, Zhang et al. 2023
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Underlying Assumption: Preferences are 
governed by an unknown ground truth reward
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We Will See: Limited understanding can lead to undesirable outcomes

Q: How can we maximize         if we only have access to it through preference data?
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Part I: Alignment via Reinforcement Learning 

Vanishing Gradients in Reinforcement Finetuning 
of Language Models

R + Zhou + Saremi  + Thilak + Bradley + Nakkiran
+ Susskind + Littwin | ICLR 2024

What Makes a Reward Model a Good Teacher?
An Optimization Perspective

R + Wang + Strauss + Wei + Lee + Arora | 
arXiv 2025

Why is Your Language Model a Poor Implicit 
Reward Model?

R + Lin + Yao + Arora | 
arXiv 2025
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1 Learn a proxy reward model (RM)                   by fitting preference data

Reinforcement Learning from Human Feedback (RLHF)

2 Maximize proxy reward via policy gradient methods (e.g. PPO) over set of prompts
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maximize reward stay close to initial policy
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Evaluating RMs

Currently, RMs are primarily evaluated through accuracy

Lambert et al. 2024

Intuitively, accuracy quantifies the extent to which
maximizing            is likely to increase

Definition: Accuracy

For prompt      and distribution       over pairs                :
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Q: Are more accurate reward models better teachers for RLHF?

Not necessarily!
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Optimization Perspective: When does an RM enable efficient policy gradient optimization?

Regardless of how accurate 
the RM is, it can induce a 
flat objective landscape 
that hinders optimization

Implication I: 
More accurate RMs are not 
necessarily better teachers 
for RLHF

Implication II: 
Fundamental limitations of 
existing RM benchmarks

1 2 3
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Definition: Reward Variance

x

In Contrast: Accuracy depends only 
on how            ranks different responses

Interpretation: Reward variance 
measures how well            separates 
responses that are probable under
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Theorem

The time it takes for the expected reward, measured w.r.t. any reward function, 

to increase by an additive constant is:
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*Same holds with almost any accuracy values for the RMs

Theorem

For any initial policy          , there exist a perfectly accurate           and 

relatively inaccurate               such that:

increases arbitrarily slower when

training with           compared to      



Illustration: Effect of Accuracy and Reward Variance
13 / 33



Illustration: Effect of Accuracy and Reward Variance
13 / 33



Illustration: Effect of Accuracy and Reward Variance
13 / 33



Illustration: Effect of Accuracy and Reward Variance
13 / 33



Illustration: Effect of Accuracy and Reward Variance
13 / 33



Experiments: More Accurate RMs Are Not Necessarily Better
14 / 33

Setting:

Ground Truth: ArmoRM

Dataset: UltraFeedback

LM: Pythia-2.8B

Chen et al. 2024, Wen et al. 2025: Further experiments showing more accurate RMs are not necessarily better



Experiments: More Accurate RMs Are Not Necessarily Better
14 / 33

Setting:

Ground Truth: ArmoRM

Dataset: UltraFeedback

LM: Pythia-2.8B

Chen et al. 2024, Wen et al. 2025: Further experiments showing more accurate RMs are not necessarily better
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Even perfectly accurate RMs can underperform 
less accurate ones, due to low reward variance

Setting:

Ground Truth: ArmoRM

Dataset: UltraFeedback

LM: Pythia-2.8B

Chen et al. 2024, Wen et al. 2025: Further experiments showing more accurate RMs are not necessarily better
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Observation: An RM can induce high reward variance for one LM yet low variance for another

Theorem

There exist                        and initial policy families               such that:

is a better teacher for

is a better teacher for
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What makes a good RM depends on the LM being aligned
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Q: What makes an RM a good teacher for RLHF?

Our results highlight the need for RM training and evaluation 
protocols that account for properties beyond accuracy

Beyond accuracy, RM needs to induce sufficient reward variance

Benchmarks evaluating RMs solely based on accuracy or 
independently of the LM they guide are fundamentally limited

More accurate RMs are not necessarily better teachers for RLHF



Importance of SFT in the RLHF Pipeline
18 / 33

Aside from the RM, reward variance depends on the prompt and LM 



Importance of SFT in the RLHF Pipeline
18 / 33

Aside from the RM, reward variance depends on the prompt and LM 

Our Results: Shed light on the importance of SFT in the RLHF pipeline



Importance of SFT in the RLHF Pipeline
18 / 33

SFT reduces number of prompts with low reward variance

Aside from the RM, reward variance depends on the prompt and LM 

Our Results: Shed light on the importance of SFT in the RLHF pipeline



Importance of SFT in the RLHF Pipeline
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SFT reduces number of prompts with low reward variance

Aside from the RM, reward variance depends on the prompt and LM 

Intuition: SFT finds a less flat initialization

Our Results: Shed light on the importance of SFT in the RLHF pipeline
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Limitation of Initial SFT Phase: Requires labeled data

Our Results: Using only 1% of samples for SFT (compared to 
prior work) allows RLHF to reach roughly same performance

19 / 33

Kept only 5% of their SFT data for 
maximizing RLHF performance

Llama 4 Released April 5th, 2025
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Data Selection Algorithms: Choose 
prompts for RL via reward variance

Not All Rollouts are Useful: Down-
Sampling Rollouts in LLM Reinforcement Learning

Xu et al. 2025

Reinforcement Learning for Reasoning in Large
Language Models with One Training Example

Wang et al. 2025

Learning to Reason at the Frontier 
of Learnability

Foster et al. 2025

Improving Generalization in Intent Detection: GRPO
 with Reward-Based Curriculum Sampling

Feng et al. 2025

https://www.arxiv.org/abs/2504.13818
https://arxiv.org/abs/2504.20571
https://www.arxiv.org/abs/2502.12272
https://arxiv.org/abs/2504.13592
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Policy Gradient Methods: Develop new 
update rules and reward transformations∇

Accelerating RLHF Training with 
Reward Variance Increase

Yang et al. 2025

DGRO: Enhancing LLM Reasoning via Exploration-
Exploitation Control and Reward Variance Management

Su et al. 2025

Policy Gradient Methods: Develop new 
update rules and reward transformations∇

RePO: Replay-Enhanced Policy Optimization

Li et al. 2025

ReDit: Reward Dithering for Improved 
LLM Policy Optimization

Wei et al. 2025

https://www.arxiv.org/abs/2505.23247
https://arxiv.org/abs/2505.12951
https://www.arxiv.org/abs/2506.09340
https://arxiv.org/abs/2506.18631
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Takeaways: Importance of Reward Variance
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Can help identify optimization issues

Useful for developing data selection, policy 
gradient, and RM training algorithms

Reward variance is a key quantity for successful RLHF
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Difference Between RM Types

We Discussed: How properties of RM affect RLHF

depend on RM type

23 / 33

Seemingly minor design choices can substantially affect reward model generalization

Our Results: Reveal why RM types generalize differently (in terms of accuracy)

What are the pros and cons of different types?



Part II: Alignment via Direct Preference Learning 

Vanishing Gradients in Reinforcement Finetuning 
of Language Models

R + Zhou + Saremi  + Thilak + Bradley + Nakkiran
+ Susskind + Littwin | ICLR 2024

What Makes a Reward Model a Good Teacher?
An Optimization Perspective

R + Wang + Strauss + Wei + Lee + Arora | 
arXiv 2025

Why is Your Language Model a Poor Implicit 
Reward Model?

R + Lin + Yao + Arora | 
arXiv 2025
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Reinforcement Learning
(e.g. Ouyang et al. 2022)

Direct Preference Learning
(e.g. Rafailov et al. 2023)

y
+

y
−

x

Unintentional Unalignment: Likelihood 
Displacement in Direct Preference Optimization

R + Malladi + Bhaskar + Chen + Arora + Hanin | 
ICLR 2025
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Directly train the LM over the preference data (e.g. DPO)
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Rafailov et al. 2023, Azar et al. 2024, Tang et al. 2024,  Xu et al. 2024, Meng et al. 2024

Numerous variants of DPO, 
differing in choice of !
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Likelihood Displacement

However, the probability of preferred responses often decreases!

Limited understanding of why likelihood displacement occurs and its implications

Benign

is similar in meaning to y+
z

Catastrophic

is opposite in meaning to z y
+

Likelihood Displacement
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(Pal et al. 2024; Yuan et al. 2024, Rafailov et al. 2024, Tajwar et al. 2024, Pang et al. 2024, Liu et al. 2024)
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Likelihood Displacement Can Cause Unintentional Unalignment

Setting: Train a language model to refuse unsafe prompts via DPO

Preference Dataset: Unsafe prompts from SORRY-Bench (Xie et al. 2024)
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Llama-3-8B-Instruct

unsafe prompt

response 1

response 2

refusals > non-refusals

y
+

y
−
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Likelihood Displacement Can Cause Unintentional Unalignment
27 / 33

Initial

DPO

Likelihood displacement leads to unintentional unalignment!
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CHES score identifies training samples causing likelihood 
displacement, whereas alternative measures do not
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Initial

DPO

DPO over samples with 
lowest CHES scores

Removing samples with high CHES scores 
mitigates unintentional unalignment



Practical Impact
31 / 33

Our work inspired new direct preference learning 
algorithms for mitigating likelihood displacement

y
+

y
−

x



Practical Impact
31 / 33

Our work inspired new direct preference learning 
algorithms for mitigating likelihood displacement

ComPO: Preference Alignment via 
Comparison Oracles

Chen et al. 2025

AlphaPO: Reward Shape Matters for LLM Alignment

Gupta et al. 2025

DPO-Shift: Shifting the Distribution of Direct 
Preference Optimization

Yang et al. 2025

Decoupling Contrastive Decoding: Robust Hallucination 
Mitigation in Multimodal Large Language Models

Chen et al. 2025

y
+

y
−

x

https://arxiv.org/abs/2505.05465
https://arxiv.org/abs/2501.03884
https://arxiv.org/abs/2502.07599
https://arxiv.org/abs/2504.08809
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Reinforcement Learning (RLHF)

Beyond accuracy, RM needs to induce 
sufficient reward variance

Practical Applications: Data selection 
and policy gradient methods

Implications: More accurate RMs are not 
better teachers for RLHF + existing RM 
benchmarks are fundamentally limited

Direct Preference Learning

Likelihood displacement can cause 
unintentional unalignment

Practical Applications: Data curation and 
direct preference learning algorithms

Theory & Experiments: Samples with 
high CHES scores lead to likelihood 
displacement
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There are countless methods for aligning language models

RLHF
Ouyang et al. 2022

DPO
Rafailov et al. 2023

IPO
Azar et al. 2023

SimPO
Meng et al. 2024

KTO
Ethayarajh et al. 2024

As We Saw: Limited understanding can lead to undesirable outcomes

Mistakes are costly due to the large scale of current models

Theory (mathematical or empirical) may be necessary for 
efficient and reliable deployment of modern AI systems

Inefficient training

Safety concerns
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