
Analyses of Policy Gradient for 
Language Model Finetuning and Optimal Control

Noam Razin

MML Seminar MPI MIS + UCLA         7 March 2024

Tel Aviv University



Optimization and Generalization in Modern Machine Learning
1 / 38



Optimization and Generalization in Modern Machine Learning
1 / 38

Optimization

Minimize a non-convex training objective



Optimization and Generalization in Modern Machine Learning
1 / 38

Generalization

Performance on data unseen in training

Optimization

Minimize a non-convex training objective



Optimization and Generalization in Modern Machine Learning
1 / 38

Generalization

Performance on data unseen in training

Determined by implicit bias of training algorithm

Optimization

Minimize a non-convex training objective



Optimization and Generalization in Modern Machine Learning
1 / 38

Generalization

Performance on data unseen in training

Determined by implicit bias of training algorithm

Optimization

Minimize a non-convex training objective

Gradient-based methods are the workhorse behind 
optimization and generalization in modern machine learning
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Vanishing Gradients in Reinforcement Finetuning
of Language Models

R + Zhou + Saremi  + Thilak + Bradley + Nakkiran + Susskind + Littwin | ICLR 2024

Optimization

Implicit Bias of Policy Gradient in Linear Quadratic Control:
Extrapolation to Unseen Initial States

R + Alexander + Cohen-Karlik + Giryes + Globerson + Cohen | arXiv 2024

Implicit Bias
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Language Model (LM): Neural network trained on large amounts of  
text data to produce a distribution over text

LMs are typically autoregressive

🤖
Input x Output yLM pθ

θ - parameters

pθ(y|x) =
∏L

l=1
pθ(yl|x,y≤l−1)

softmax is used for producing 
next-token probabilities

5 / 38
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(e.g.  Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Learned from human preferences Tailored to a downstream task
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(
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2/3)

Expected gradient for an input 
vanishes when reward std is small, 
even if reward mean is suboptimal

Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

*Same holds for PPO gradient

Can be problematic when finetuning text distribution differs from pretraining

Proof Idea: Stems from use of softmax + reward maximization objective
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Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization ❌

Observation: Initial SFT phase reduces number of inputs with small reward std

Importance of SFT in RFT pipeline: mitigates vanishing gradients

NarrativeQA
(train)
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Limitation of Initial SFT Phase: Requires labeled data

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT

A few steps of SFT on small # of labeled samples should suffice

16 / 38

The initial SFT phase does not need to be expensive!

Using 1% of labeled samples and 40% of steps for initial SFT 
allows RFT to reach roughly same reward as with “full” initial SFT
 

Result
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∇θVθ(x) ≈ 0

Vanishing gradients in RFT are prevalent and 
detrimental to maximizing reward

Initial SFT phase allows overcoming vanishing 
gradients in RFT, and does not need to be expensive

Reward std is a key quantity to track for successful RFT

Expected gradient for an input vanishes in RFT 
if the input’s reward std is small
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Issue of Prime Importance: Extrapolation 
to initial states unseen in training

Often multiple controllers minimize cost
for initial states seen in training

Extrapolation is determined by the 
implicit bias of policy gradient

Effect of implicit bias on extrapolation was theoretically studied in supervised learning
(Xu et al. 2021, Abbe et al. 2022/23, Cohen-Karlik et al. 2022/23)

not understood in optimal control
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costS(K) = 1

|S|

∑

x0∈S

∑H

h=0
x⊤
h

(

Q+K⊤RK
)

xhTraining cost:

(e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)

Typically assume that:

• Cost matrix       is positive definite — controls are regularized     R

• Training set of initial states       spansS RD

Training cost has a unique minimizer

Under these assumptions implicit bias is irrelevant
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•                — controls are not regularized     R = 0

• Training set of initial states       does not spanS RD

•      is full rank — controller’s ability to affect the state is not limitedB

In this setting the training cost has multiple minimizers

costS(K) = 1

|S|

∑
x0∈S

∑H

h=0
∥(A+K)hx0∥2

xh+1 = (A+BK)xh
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Sproduce identical controls for states in

U

We quantify extrapolation for a controller       by its performance on initial states in  K

S⊥

U

Let       be an arbitrary orthonormal basis ofU

Extrapolation Error

E(K) := 1

|U|

∑
x0∈U∥(A+K)x0∥2

minimizes the training cost if and only ifOptimality Condition: ∥(A+K)x0∥2 = 0K x0 ∈ S

sends        to zero K x0

for all
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(A+Kext)x0 = 0 x0 ∈ RDfor all

Minimizes the training cost and

E(Kext) = 0

Satisfies 

Perfectly Extrapolating Kext Kno-ext

(A+Kno-ext)x0 =

{

0 ,x0 ∈ S

Ax0 ,x0 ∈ U
Satisfies 

is typically high

Minimizes the training cost but

E(Kno-ext)

Extrapolation Error

E(K) := 1

|U|

∑
x0∈U∥(A+K)x0∥2
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— the set of states encountered
     during policy gradient 

Xpg— the policy gradient controller 
     at iteration 𝑡

K(t)

Proposition — Exploration is Necessary for Extrapolation

• There exist systems s.t.    and Xpg ⊆ span(S)

• For any                     the controls produced by             and                   are the same         x ∈ X⊥
pg Kno-extK(t)

— initial states seen
     in training

S

E(K(t)) = E(Kno-ext)
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Proposition

Policy gradient converges to           , which minimizes the training cost and:Kpg

E(Kpg) << E(Kno-ext)

where perfect extrapolation is attained when the horizon  H → ∞
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Proof Idea: 

• Intuition: Random system generically induces exploration

• Convert intuition to formal guarantee via tools from random matrix theory and topology

Limitations: Condition on learning rate + only second iterate of policy gradient

Theorem

If the learning rate 𝜂 is sufficiently small, a single iteration of policy gradient
leads to non-trivial extrapolation:

Additionally, extrapolation occurs with high probability if       is largeD

E
[

E(K(1))
]

≤ E
[

E(Kno-ext)
]

− Ω
(

η · H
2

D

)

experiments suggest these limitations may be alleviated
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Optimal ControlSupervised Learning

Task: Linear regression

Known (e.g. Zhang et al. 2017): Implicit bias minimizes 
Euclidean norm

Task: LQR

Among controllers minimizing the training cost,                    has the minimal Euclidean norm 

Corollary

Kno-ext

Extrapolation implies policy gradient does not implicitly minimize Euclidean norm

Our Work: Implicit bias does not minimize 
Euclidean norm
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Q: To what extent does the implicit bias of policy gradient lead to 
extrapolation to initial states unseen in training?

Theory for the Linear Quadratic Regulator (LQR) Problem:
Extrapolation depends on an interplay between the system 
and initial states seen in training

Experiments:
Support theory for LQR and demonstrate its conclusions 
apply to non-linear systems and neural network controllers 
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No extrapolation occurs under the identity system, while  for the shift
and random systems we have non-trivial extrapolation (yet not perfect)

In accordance with our theory:

LQR Problem
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Our Theory: Linear system induces exploration 
from initial states seen in training              Linear 
controller typically extrapolates

Experiments: Phenomenon 
extends to non-linear systems and 
neural network controllers

Pendulum Control Problem 
(analogous experiments for a 
quadcopter control problem)

The controller learned via policy gradient extrapolates
despite existence of non-extrapolating controllers
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Optimization and implicit bias have been 
extensively studied

Our Results: Optimization and implicit bias can 
substantially differ from those in supervised 
learning, hence require dedicated study

Studying optimization and implicit bias in optimal control/reinforcement 
learning  may allow addressing their unique challenges
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