Analyses of Policy Gradient for Language Model Finetuning and Optimal Control

Noam Razin
Tel Aviv University

MML Seminar MPI MIS + UCLA 7 March 2024

Optimization and Generalization in Modern Machine Learning

Optimization and Generalization in Modern Machine Learning

Optimization

Minimize a non-convex training objective

Optimization and Generalization in Modern Machine Learning

Optimization and Generalization in Modern Machine Learning

Optimization and Generalization in Modern Machine Learning

Generalization

Performance on data unseen in training

Determined by implicit bias of training algorithm

Gradient-based methods are the workhorse behind optimization and generalization in modern machine learning

Supervised Learning vs Optimal Control/Reinforcement Learning

Supervised Learning vs Optimal Control/Reinforcement Learning

Supervised Learning

Task: Learn predictor minimizing loss over labeled data

Training Algorithm: Gradient descent

Supervised Learning vs Optimal Control/Reinforcement Learning

[^0]
Supervised Learning vs Optimal Control/Reinforcement Learning

Task: Learn predictor minimizing loss over labeled data

Training Algorithm: Gradient descent
Optimization Dynamics and Implicit Bias Extensively Studied

Optimal Control/Reinforcement Learning

Task: Learn policy minimizing cost/maximizing reward over dynamical system

Training Algorithm: Policy gradient

[^1]
Supervised Learning vs Optimal Control/Reinforcement Learning

Task: Learn predictor minimizing loss over labeled data

Training Algorithm: Gradient descent
Optimization Dynamics and Implicit Bias Extensively Studied

Optimal Control/Reinforcement Learning

Task: Learn policy minimizing cost/maximizing reward over dynamical system

Training Algorithm: Policy gradient
Optimization Dynamics and Implicit Bias Limited Understanding
(e.g., Neyshabur et al. 2014, Gunasekar et al. 2017, Soudry et al. 2018, Arora et al. 2019, Ji \& Telgarsky 2019; R et al. 2020/21/22, Pesme et al. 2021, Lyu et al. 2021, Boursier et al. 2022, Andriushchenko et al. 2023, Frei et al. 2023, Jin \& Montúfar 2023, Abbe et al. 2023)

Sources

Optimization

Implicit Bias

Vanishing Gradients in Reinforcement Finetuning of Language Models

R + Zhou + Saremi + Thilak + Bradley + Nakkiran + Susskind + Littwin | ICLR 2024

Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

R + Alexander + Cohen-Karlik + Giryes + Globerson + Cohen | arXiv 2024

Vanishing Gradients in Reinforcement Finetuning of Language Models

R + Zhou + Saremi + Thilak + Bradley + Nakkiran + Susskind + Littwin | ICLR 2024

Language Models (LMs)

Language Model (LM): Neural network trained on large amounts of text data to produce a distribution over text

Language Models (LMs)

Language Model (LM): Neural network trained on large amounts of text data to produce a distribution over text

Language Models (LMs)

Language Model (LM): Neural network trained on large amounts of text data to produce a distribution over text

LMs are typically autoregressive

Language Models (LMs)

Language Model (LM): Neural network trained on large amounts of text data to produce a distribution over text

LMs are typically autoregressive $p_{\theta}(\mathbf{y} \mid \mathbf{x})=\prod_{l=1}^{L} p_{\theta}\left(y_{l} \mid \mathbf{x}, \mathbf{y}_{\leq l-1}\right)$

Language Models (LMs)

Language Model (LM): Neural network trained on large amounts of text data to produce a distribution over text

LMs are typically autoregressive $p_{\theta}(\mathbf{y} \mid \mathbf{x})=\prod_{l=1}^{L} \underbrace{p_{\theta}\left(y_{l} \mid \mathbf{x}, \mathbf{y}_{\leq l-1}\right.})$
softmax is used for producing next-token probabilities

Supervised Finetuning of LMs

LMs are adapted to human preferences and downstream tasks via finetuning

Supervised Finetuning of LMs

LMs are adapted to human preferences and downstream tasks via finetuning

Supervised Finetuning (SFT)

Minimize cross entropy loss over labeled inputs via gradient-based methods

$$
(\equiv, \equiv)(\equiv, \equiv) \cdots(\equiv, \equiv)
$$

Supervised Finetuning of LMs

LMs are adapted to human preferences and downstream tasks via finetuning

Supervised Finetuning（SFT）

Minimize cross entropy loss over labeled inputs via gradient－based methods

$$
\text { (三, 三) (三, 三) } \cdots(\equiv \text { (三) }
$$

Limitations：

Supervised Finetuning of LMs

LMs are adapted to human preferences and downstream tasks via finetuning

Supervised Finetuning (SFT)

Minimize cross entropy loss over labeled inputs via gradient-based methods

$$
(\equiv, \equiv)(\equiv, \equiv) \cdots(\equiv \text { (三) }
$$

Limitations:

8 Hard to formalize human preferences through labels

Supervised Finetuning of LMs

LMs are adapted to human preferences and downstream tasks via finetuning

Supervised Finetuning (SFT)

Minimize cross entropy loss over labeled inputs via gradient-based methods

$$
(\equiv, \equiv)(\equiv, \equiv) \cdots \quad(\equiv, \equiv)
$$

Limitations:

8 Hard to formalize human preferences through labels
(5)) Labeled data is expensive

Reinforcement Finetuning of LMs

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g. Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Reinforcement Finetuning of LMs

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g. Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Reinforcement Finetuning (RFT)

Maximize reward over unlabeled inputs via policy gradient algorithms

$$
\overline{\overline{\underline{I}}}, \cdots, \cdots, \quad \text { reward function } r(\mathrm{x}, \mathrm{y})
$$

Reinforcement Finetuning of LMs

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g. Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Reinforcement Finetuning (RFT)

Maximize reward over unlabeled inputs via policy gradient algorithms

$$
\bar{\equiv}, \underline{\equiv}, \cdots, \bar{\equiv} \quad \text { reward function } r(\mathrm{x}, \mathrm{y})
$$

Expected reward for input $\mathrm{x}: V_{\theta}(\mathrm{x})=\mathbb{E}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$

Reinforcement Finetuning of LMs

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g. Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Reinforcement Finetuning (RFT)

Maximize reward over unlabeled inputs via policy gradient algorithms

$$
\bar{\equiv}, \underline{\bar{\Xi}}, \cdots, \bar{\equiv} \quad \text { reward function } r(\mathrm{x}, \mathrm{y})
$$

Expected reward for input $\mathrm{x}: V_{\theta}(\mathrm{x})=\mathbb{E}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$

Reward function $r(\mathrm{x}, \mathrm{y})$ can be:

Reinforcement Finetuning of LMs

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g. Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Reinforcement Finetuning (RFT)

Maximize reward over unlabeled inputs via policy gradient algorithms

$$
\overline{\overline{\underline{I}}},, \cdots, \overline{\bar{\sum}}, \quad \text { reward function } r(\mathrm{x}, \mathrm{y})
$$

Expected reward for input $\mathrm{x}: V_{\theta}(\mathrm{x})=\mathbb{E}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$

Reward function $r(\mathrm{x}, \mathrm{y})$ can be:
28. Learned from human preferences

Reinforcement Finetuning of LMs

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g. Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Reinforcement Finetuning (RFT)

Maximize reward over unlabeled inputs via policy gradient algorithms

$$
\overline{\overline{\underline{I}}},, \cdots, \overline{\bar{\Xi}}, \quad \text { reward function } r(\mathrm{x}, \mathrm{y})
$$

Expected reward for input $\mathrm{x}: V_{\theta}(\mathrm{x})=\mathbb{E}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$

Reward function $r(\mathrm{x}, \mathrm{y})$ can be:
Learned from human preferences
$\mathbf{Q}_{\mathbf{A}}$ Tailored to a downstream task

Main Contributions: Vanishing Gradients in RFT

Main Contributions: Vanishing Gradients in RFT

$$
\nabla_{\theta} \mathbf{V}_{\theta}(\mathrm{x}) \approx 0 \quad \begin{aligned}
& \text { Fundamental vanishing gradients } \\
& \text { problem in RFT }
\end{aligned}
$$

Main Contributions: Vanishing Gradients in RFT

\square

$\nabla_{\theta} \mathbf{V}_{\theta}(\mathrm{x}) \approx 0$
Fundamental vanishing gradients problem in RFT

Vanishing gradients are prevalent and harm ability to maximize reward

Main Contributions: Vanishing Gradients in RFT

$\nabla_{\theta} \mathbf{V}_{\theta}(\mathrm{x}) \approx 0$
 Fundamental vanishing gradients problem in RFT

Vanishing gradients are prevalent and harm ability to maximize reward

Exploring ways to overcome vanishing gradients in RFT

Main Contributions: Vanishing Gradients in RFT

$$
\begin{array}{ll}
\nabla_{\theta} \mathbf{V}_{\theta}(\mathrm{x}) \approx 0 & \begin{array}{l}
\text { Fundamental vanishing gradients } \\
\text { problem in RFT }
\end{array}
\end{array}
$$

Vanishing gradients are prevalent and harm ability to maximize reward (2) Exploring ways to overcome vanishing
gradients in RFT

Vanishing Gradients Due to Small Reward Standard Deviation (STD)

$\mathrm{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$ - reward std of x under the model

Vanishing Gradients Due to Small Reward Standard Deviation (STD)

-

$\mathrm{STD}_{\mathbf{y} \sim p_{\theta}(\cdot \mid \mathbf{x})}[r(\mathbf{x}, \mathbf{y})]$ - reward std of \mathbf{x} under the model

Theorem

$$
\left\|\nabla_{\theta} V_{\theta}(\mathbf{x})\right\|=O\left(\mathrm{STD}_{\mathbf{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]^{2 / 3}\right)
$$

*Same holds for PPO gradient

Vanishing Gradients Due to Small Reward Standard Deviation (STD)

$\operatorname{STD}_{\mathbf{y} \sim p_{\theta}(\cdot \mid \mathbf{x})}[r(\mathbf{x}, \mathbf{y})]$ - reward std of \mathbf{x} under the model

Theorem

$\left\|\nabla_{\theta} V_{\theta}(\mathrm{x})\right\|=O\left(\operatorname{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]^{2 / 3}\right)$
(1) Expected gradient for an input vanishes when reward std is small, even if reward mean is suboptimal
*Same holds for PPO gradient

Vanishing Gradients Due to Small Reward Standard Deviation (STD)

$\operatorname{STD}_{\mathbf{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$ - reward std of x under the model

Theorem

$$
\left\|\nabla_{\theta} V_{\theta}(\mathrm{x})\right\|=O\left(\operatorname{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]^{2 / 3}\right)
$$

(1) Expected gradient for an input vanishes when reward std is small, even if reward mean is suboptimal
*Same holds for PPO gradient
Proof Idea: Stems from use of softmax + reward maximization objective

Vanishing Gradients Due to Small Reward Standard Deviation (STD)

$\mathrm{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$ - reward std of x under the model

Theorem

$$
\left\|\nabla_{\theta} V_{\theta}(\mathrm{x})\right\|=O\left(\mathrm{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]^{2 / 3}\right)
$$

(1) Expected gradient for an input vanishes when reward std is small, even if reward mean is suboptimal
*Same holds for PPO gradient
Proof Idea: Stems from use of softmax + reward maximization objective
Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

Vanishing Gradients Due to Small Reward Standard Deviation (STD)

$\mathrm{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]$ - reward std of x under the model

Theorem

$$
\left\|\nabla_{\theta} V_{\theta}(\mathrm{x})\right\|=O\left(\mathrm{STD}_{\mathrm{y} \sim p_{\theta}(\cdot \mid \mathrm{x})}[r(\mathrm{x}, \mathrm{y})]^{2 / 3}\right)
$$

(1) Expected gradient for an input vanishes when reward std is small, even if reward mean is suboptimal
*Same holds for PPO gradient
Proof Idea: Stems from use of softmax + reward maximization objective
Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

Can be problematic when finetuning text distribution differs from pretraining

Main Contributions: Vanishing Gradients in RFT

\square

Fundamental vanishing gradients problem in RFT

Vanishing gradients are prevalent and harm ability to maximize reward

Exploring ways to overcome vanishing gradients in RFT

Prevalence and Detrimental Effects of Vanishing Gradients

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023)
7 language generation datasets

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets

Finding I
3 of 7 datasets contain considerable \# of train inputs with small reward std and low reward

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets
vanishing gradients
Finding I
3 of 7 datasets contain considerable \# of train inputs with small reward std and low reward

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets

Finding I

vanishing gradients

3 of 7 datasets contain considerable \# of train inputs with small reward std and low reward

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base 7 language generation datasets

Finding I

vanishing gradients
3 of 7 datasets contain considerable \# of train inputs with small reward std and low reward

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets

Finding II

As expected, RFT has limited impact on the reward of inputs with small reward std

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base 7 language generation datasets

Finding II

As expected, RFT has limited impact on the reward of inputs with small reward std

NarrativeQA (many inputs w/ small std)

IMDB
(few inputs w/ small std)

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base 7 language generation datasets

Finding II

As expected, RFT has limited impact on the reward of inputs with small reward std

NarrativeQA (many inputs w/ small std)

(few inputs w/ small std)

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base 7 language generation datasets

Finding II

As expected, RFT has limited impact on the reward of inputs with small reward std

NarrativeQA
(many inputs w/ small std)

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets
Finding III

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base
7 language generation datasets

Finding III

RFT performance is worse when inputs with small reward std are prevalent

Prevalence and Detrimental Effects of Vanishing Gradients

Benchmark: GRUE (Ramamurthy et al. 2023) Models: GPT-2 and T5-base 7 language generation datasets

Finding III

RFT performance is worse when inputs with small reward std are prevalent

Main Contributions: Vanishing Gradients in RFT

Fundamental vanishing gradients problem in RFT
 Vanishing gradients are prevalent and
 harm ability to maximize reward

Exploring ways to overcome vanishing gradients in RFT

Overcoming Vanishing Gradients in RFT

Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization

Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization

Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization

Observation: Initial SFT phase reduces number of inputs with small reward std

Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization

Observation: Initial SFT phase reduces number of inputs with small reward std

NarrativeQA
(train)

Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization

Observation: Initial SFT phase reduces number of inputs with small reward std

(1) Importance of SFT in RFT pipeline: mitigates vanishing gradients

A Few SFT Steps on a Small Number of Samples Suffice

A Few SFT Steps on a Small Number of Samples Suffice

Limitation of Initial SFT Phase: Requires labeled data (\$))

A Few SFT Steps on a Small Number of Samples Suffice

Limitation of Initial SFT Phase: Requires labeled data (\$))

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT

A Few SFT Steps on a Small Number of Samples Suffice
 -

Limitation of Initial SFT Phase: Requires labeled data (\$))

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT
\longrightarrow A few steps of SFT on small \# of labeled samples should suffice

A Few SFT Steps on a Small Number of Samples Suffice

Limitation of Initial SFT Phase: Requires labeled data (\$))

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT
\longrightarrow A few steps of SFT on small \# of labeled samples should suffice

Result

Using 1\% of labeled samples and 40\% of steps for initial SFT allows RFT to reach roughly same reward as with "full" initial SFT

A Few SFT Steps on a Small Number of Samples Suffice

Limitation of Initial SFT Phase: Requires labeled data (\$))

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT
\longrightarrow A few steps of SFT on small \# of labeled samples should suffice

Result

Using 1\% of labeled samples and 40\% of steps for initial SFT allows RFT to reach roughly same reward as with "full" initial SFT
() The initial SFT phase does not need to be expensive!

Conclusion: Vanishing Gradients in RFT

Conclusion: Vanishing Gradients in RFT

$\nabla_{\theta} \mathrm{V}_{\theta}(\mathrm{x}) \approx 0$
Expected gradient for an input vanishes in RFT
if the input's reward std is small

Conclusion: Vanishing Gradients in RFT

Expected gradient for an input vanishes in RFT
if the input's reward std is small

Vanishing gradients in RFT are prevalent and detrimental to maximizing reward

Conclusion: Vanishing Gradients in RFT

\square

Expected gradient for an input vanishes in RFT
if the input's reward std is small

Vanishing gradients in RFT are prevalent and detrimental to maximizing reward

Initial SFT phase allows overcoming vanishing gradients in RFT, and does not need to be expensive

Conclusion: Vanishing Gradients in RFT

$\nabla_{\theta} \mathbf{V}_{\theta}(\mathbf{x}) \approx \mathbf{0}$
Expected gradient for an input vanishes in RFT
if the input's reward std is small

Vanishing gradients in RFT are prevalent and detrimental to maximizing reward

Initial SFT phase allows overcoming vanishing gradients in RFT, and does not need to be expensive
(1) Reward std is a key quantity to track for successful RFT

Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

R + Alexander + Cohen-Karlik + Giryes + Globerson + Cohen | arXiv 2024

Policy Gradient in Optimal Control

Optimal Control Problem

Policy Gradient in Optimal Control

Optimal Control Problem

(2) System: Starting from an initial state \mathbf{x}_{0}

Policy Gradient in Optimal Control

Optimal Control Problem

(2) System: Starting from an initial state x_{0}

$$
\mathbf{x}_{h+1}=f\left(\mathbf{x}_{h}, \mathbf{u}_{h}\right) \quad h=0, \ldots, H-1
$$

Policy Gradient in Optimal Control

Optimal Control Problem

(2) System: Starting from an initial state x_{0}

$$
\mathbf{x}_{h+1}=f\left(\mathbf{x}_{h}, \mathbf{u}_{h}\right) \quad h=0, \ldots, H-1
$$

Goal: Choose controls that minimize the cost $\sum_{h=0}^{H} c\left(\mathbf{x}_{h}, \mathbf{u}_{h}\right)$

Policy Gradient in Optimal Control

Optimal Control Problem

(2) System: Starting from an initial state x_{0}

$$
\mathbf{x}_{h+1}=f\left(\mathbf{x}_{h}, \mathbf{u}_{h}\right) \quad h=0, \ldots, H-1
$$

Policy Gradient
TO-: Parameterize controller (e.g. as neural network)

Policy Gradient in Optimal Control

Optimal Control Problem

(2) System: Starting from an initial state x_{0}

$$
\mathbf{x}_{h+1}=f\left(\mathbf{x}_{h}, \mathbf{u}_{h}\right) \quad h=0, \ldots, H-1
$$

Policy Gradient
TO: Parameterize controller (e.g. as neural network)
∇ Minimize cost via gradient descent w.r.t. controller parameters

Extrapolation to Unseen Initial States

Issue of Prime Importance: Extrapolation
to initial states unseen in training

Extrapolation to Unseen Initial States

Issue of Prime Importance: Extrapolation to initial states unseen in training

Often multiple controllers minimize cost for initial states seen in training

Extrapolation to Unseen Initial States

Issue of Prime Importance: Extrapolation to initial states unseen in training

Often multiple controllers minimize cost for initial states seen in training

Extrapolation is determined by the implicit bias of policy gradient

Extrapolation to Unseen Initial States

Issue of Prime Importance: Extrapolation to initial states unseen in training

Often multiple controllers minimize cost for initial states seen in training

Extrapolation is determined by the implicit bias of policy gradient

Effect of implicit bias on extrapolation was theoretically studied in supervised learning

Extrapolation to Unseen Initial States

Issue of Prime Importance: Extrapolation to initial states unseen in training

Often multiple controllers minimize cost for initial states seen in training

Extrapolation is determined by the implicit bias of policy gradient

Effect of implicit bias on extrapolation was theoretically studied in supervised learning

Main Contributions: Effect of Implicit Bias on Extrapolation

Main Contributions: Effect of Implicit Bias on Extrapolation

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?

Main Contributions: Effect of Implicit Bias on Extrapolation

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?
$\left(\begin{array}{ccc}0 & 1 & 0 \\ 10 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right) \quad$ Theory for the Linear Quadratic Regulator (LQR) Problem:
Extrapolation depends on an interplay between the system and initial states seen in training

Main Contributions: Effect of Implicit Bias on Extrapolation

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?
$\left[\begin{array}{ccc}01 & 1 & 0 \\ 101 & 0 \\ 0 & 1 \\ 0\end{array}\right] \quad$ Theory for the Linear Quadratic Regulator (LQR) Problem:
Extrapolation depends on an interplay between the system and initial states seen in training

Experiments:

Support theory for LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

Main Contributions: Effect of Implicit Bias on Extrapolation

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?
$\left(\begin{array}{cc}010 & 0 . . .\end{array}\right) \quad$ Theory for the Linear Quadratic Regulator (LQR) Problem:
Extrapolation depends on an interplay between the system and initial states seen in training

Experiments:

Support theory for LQR and demonstrate its conclusions
apply to non-linear systems and neural network controllers

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

> 25 Linear System
> $\mathbf{x}_{h+1}=\mathbf{A} \mathbf{x}_{h}+\mathbf{B u}_{h}$

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)
(2) Linear System
$\mathbf{x}_{h+1}=\mathbf{A} \mathbf{x}_{h}+\mathbf{B} \mathbf{u}_{h}$

> © Quadratic Costs
> $\sum_{h=0}^{H} \mathbf{x}_{h}^{\top} \mathbf{Q} \mathbf{x}_{h}+\mathbf{u}_{h}^{\top} \mathbf{R} \mathbf{u}_{h}$

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

$$
\begin{aligned}
& \text { (2) Linear System } \\
& \mathbf{x}_{h+1}=\mathbf{A x}_{h}+\mathbf{B u} \mathbf{u}_{h}
\end{aligned} \quad \begin{gathered}
\text { CS } \text { Quadratic Costs } \\
\sum_{h=0}^{H} \mathbf{x}_{h}^{\top} \mathbf{Q} \mathbf{x}_{h}+\mathbf{u}_{h}^{\top} \mathbf{R} \mathbf{u}_{h}
\end{gathered}
$$

กัㅇํ Linear Controller

$$
\mathbf{u}_{h}=\mathbf{K} \mathbf{x}_{h}
$$

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

$$
\begin{aligned}
& \text { (2) Linear System } \\
& \mathbf{x}_{h+1}=\mathbf{A} \mathbf{x}_{h}+\mathbf{B} \mathbf{u}_{h}
\end{aligned} \quad \begin{gathered}
\text { CS } \text { Quadratic Costs } \\
\sum_{h=0}^{H} \mathbf{x}_{h}^{\top} \mathbf{Q} \mathbf{x}_{h}+\mathbf{u}_{h}^{\top} \mathbf{R} \mathbf{u}_{h}
\end{gathered}
$$

\% Linear Controller

$$
\mathbf{u}_{h}=\mathbf{K} \mathbf{x}_{h}
$$

For training set of initial states $\mathcal{S} \subset \mathbb{R}^{D}$ the controller is learned by minimizing the training cost:

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

$$
\begin{aligned}
& \text { (2) Linear System } \\
& \mathbf{x}_{h+1}=\mathbf{A} \mathbf{x}_{h}+\mathbf{B} \mathbf{u}_{h}
\end{aligned} \quad \begin{gathered}
\text { C } \text { Quadratic Costs } \\
\sum_{h=0}^{H} \mathbf{x}_{h}^{\top} \mathbf{Q} \mathbf{x}_{h}+\mathbf{u}_{h}^{\top} \mathbf{R} \mathbf{u}_{h}
\end{gathered}
$$

(\%) Linear Controller

$$
\mathbf{u}_{h}=\mathbf{K} \mathbf{x}_{h}
$$

For training set of initial states $\mathcal{S} \subset \mathbb{R}^{D}$ the controller is learned by minimizing the training cost:

$$
\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

$$
\begin{aligned}
& \text { (2) Linear System } \\
& \mathbf{x}_{h+1}=\mathbf{A x}_{h}+\mathbf{B u} \mathbf{u}_{h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C }{ }_{\text {C }}^{\text {S }} \text { Quadratic Costs } \\
& \sum_{h=0}^{H} \mathbf{x}_{h}^{\top} \mathbf{Q} \mathbf{x}_{h}+\mathbf{u}_{h}^{\top} \mathbf{R} \mathbf{u}_{h}
\end{aligned}
$$

Fiof Linear Controller

$$
\mathbf{u}_{h}=\mathbf{K x}_{h}
$$

For training set of initial states $\mathcal{S} \subset \mathbb{R}^{D}$ the controller is learned by minimizing the training cost:

$$
\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Learning the controller via policy gradient amounts to:

$$
\begin{aligned}
& \mathbf{K}^{(t+1)}=\mathbf{K}^{(t)}-\eta \cdot \nabla \operatorname{cost}_{\mathcal{S}}\left(\mathbf{K}^{(t)}\right) \\
& \text { learning rate }
\end{aligned}
$$

The Linear Quadratic Regulator (LQR) Problem

LQR Problem (state $\mathbf{x}_{h} \in \mathbb{R}^{D}$, control $\mathbf{u}_{h} \in \mathbb{R}^{M}$)

$$
\begin{aligned}
& \text { (2) Linear System } \\
& \mathbf{x}_{h+1}=\mathbf{A} \mathbf{x}_{h}+\mathbf{B u} \mathbf{u}_{h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CC Quadratic Costs } \\
& \sum_{h=0}^{H} \mathbf{x}_{h}^{\top} \mathbf{Q} \mathbf{x}_{h}+\mathbf{u}_{h}^{\top} \mathbf{R} \mathbf{u}_{h}
\end{aligned}
$$

TO: Linear Controller

$$
\mathbf{u}_{h}=\mathbf{K x}_{h}
$$

For training set of initial states $\mathcal{S} \subset \mathbb{R}^{D}$ the controller is learned by minimizing the training cost:

$$
\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Learning the controller via policy gradient amounts to:

$$
\begin{aligned}
& \mathbf{K}^{(t+1)}=\mathbf{K}^{(t)}-\eta \cdot \nabla \operatorname{cost}_{\mathcal{S}}\left(\mathbf{K}^{(t)}\right) \quad \text { initialization } \mathbf{K}^{(0)}=\mathbf{0} \\
& \text { learning rate }
\end{aligned}
$$

Existing Analyses of Policy Gradient in LQR

Training cost: $\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}$

Existing Analyses of Policy Gradient in LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Existing Analyses of Policy Gradient in LQR (e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)
Typically assume that:

Existing Analyses of Policy Gradient in LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Existing Analyses of Policy Gradient in LQR (e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)
Typically assume that:

- Cost matrix \mathbf{R} is positive definite - controls are regularized

Existing Analyses of Policy Gradient in LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Existing Analyses of Policy Gradient in LQR (e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)
Typically assume that:

- Cost matrix \mathbf{R} is positive definite - controls are regularized
- Training set of initial states \mathcal{S} spans \mathbb{R}^{D}

Existing Analyses of Policy Gradient in LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Existing Analyses of Policy Gradient in LQR (e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)
Typically assume that:

- Cost matrix \mathbf{R} is positive definite - controls are regularized
- Training set of initial states \mathcal{S} spans \mathbb{R}^{D}

Training cost has a unique minimizer

Existing Analyses of Policy Gradient in LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Existing Analyses of Policy Gradient in LQR (e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)
Typically assume that:

- Cost matrix \mathbf{R} is positive definite - controls are regularized
- Training set of initial states \mathcal{S} spans \mathbb{R}^{D}

Training cost has a unique minimizer
Under these assumptions implicit bias is irrelevant

Setting: Underdetermined LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}
$$

Underdetermined LQR

Setting: Underdetermined LQR

Training cost: $\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized

Setting: Underdetermined LQR

Training cost: $\cos _{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized
- Training set of initial states \mathcal{S} does not span \mathbb{R}^{D}

Setting: Underdetermined LQR

Training cost: $\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized
- Training set of initial states \mathcal{S} does not span \mathbb{R}^{D}
- B is full rank - controller's ability to affect the state is not limited

$$
\mathbf{x}_{h+1}=(\mathbf{A}+\mathbf{B K}) \mathbf{x}_{h}
$$

Setting: Underdetermined LQR

Training cost: $\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_{h}^{\top}\left(\mathbf{Q}+\mathbf{K}^{\top} \mathbf{R K}\right) \mathbf{x}_{h}$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized
- Training set of initial states \mathcal{S} does not span \mathbb{R}^{D}

> For simplicity: $$
\mathbf{B}=\mathbf{Q}=\mathbf{I}
$$

- B is full rank - controller's ability to affect the state is not limited

$$
\mathbf{x}_{h+1}=(\mathbf{A}+\mathbf{B K}) \mathbf{x}_{h}
$$

Setting: Underdetermined LQR

Training cost: $\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H}\left\|\mathbf{x}_{h}\right\|^{2}$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized
- Training set of initial states \mathcal{S} does not span \mathbb{R}^{D}
- \mathbf{B} is full rank - controller's ability to affect the state is not limited

> For simplicity: $$
\mathbf{B}=\mathbf{Q}=\mathbf{I}
$$

$$
\mathbf{x}_{h+1}=(\mathbf{A}+\mathbf{B K}) \mathbf{x}_{h}
$$

Setting: Underdetermined LQR

Training cost: $\operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H}\left\|(\mathbf{A}+\mathbf{K})^{h} \mathbf{x}_{0}\right\|^{2}$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized
- Training set of initial states \mathcal{S} does not span \mathbb{R}^{D}
- B is full rank - controller's ability to affect the state is not limited

> For simplicity: $$
\mathbf{B}=\mathbf{Q}=\mathbf{I}
$$

$$
\mathbf{x}_{h+1}=(\mathbf{A}+\mathbf{B K}) \mathbf{x}_{h}
$$

Setting: Underdetermined LQR

$$
\text { Training cost: } \operatorname{cost}_{\mathcal{S}}(\mathbf{K})=\frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_{0} \in \mathcal{S}} \sum_{h=0}^{H}\left\|(\mathbf{A}+\mathbf{K})^{h} \mathbf{x}_{0}\right\|^{2}
$$

Underdetermined LQR

- $\mathbf{R}=\mathbf{0}$ - controls are not regularized
- Training set of initial states \mathcal{S} does not span \mathbb{R}^{D}

For simplicity:
$\mathbf{B}=\mathbf{Q}=\mathbf{I}$

- B is full rank - controller's ability to affect the state is not limited

```
\mp@subsup{x}{h+1}{}}=(\mathbf{A}+\mathbf{BK})\mp@subsup{\mathbf{x}}{h}{
```

In this setting the training cost has multiple minimizers

Quantifying Extrapolation

Quantifying Extrapolation

Optimality Condition: K minimizes the training cost if and only if $\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0$ for all $\mathbf{x}_{0} \in \mathcal{S}$

Quantifying Extrapolation

Optimality Condition: K minimizes the training cost if and only if $\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0$ for all $\mathbf{x}_{0} \in \mathcal{S}$
\mathbf{K} sends \mathbf{x}_{0} to zero

Quantifying Extrapolation

Optimality Condition: \mathbf{K} minimizes the training cost if and only if $\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0$ for all $\mathbf{x}_{0} \in \mathcal{S}$
K sends x_{0} to zero
Let \mathcal{U} be an arbitrary orthonormal basis of \mathcal{S}^{\perp}

Quantifying Extrapolation

Optimality Condition: K minimizes the training cost if and only if $\underbrace{\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0}_{\mathbf{K} \text { sends } \mathbf{x}_{0} \text { to zero }}$ for all $\mathbf{x}_{0} \in \mathcal{S}$
Let \mathcal{U} be an arbitrary orthonormal basis of \mathcal{S}^{\perp}

Controllers minimizing the training cost

Quantifying Extrapolation

Optimality Condition: K minimizes the training cost if and only if $\underbrace{\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0}$ for all $\mathbf{x}_{0} \in \mathcal{S}$
K sends \mathbf{x}_{0} to zero
Let \mathcal{U} be an arbitrary orthonormal basis of \mathcal{S}^{\perp}
Controllers minimizing the training cost $\left\{\begin{array}{l}\text { produce identical controls for states in } \mathcal{S} \\ \text { differ arbitrarily in their controls for states in } \mathcal{U}\end{array}\right.$

Quantifying Extrapolation

Optimality Condition: K minimizes the training cost if and only if $\underbrace{\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0}$ for all $\mathbf{x}_{0} \in \mathcal{S}$
K sends \mathbf{x}_{0} to zero
Let \mathcal{U} be an arbitrary orthonormal basis of \mathcal{S}^{\perp}
Controllers minimizing the training cost $\left\{\begin{array}{l}\text { produce identical controls for states in } \mathcal{S} \\ \text { differ arbitrarily in their controls for states in } \mathcal{U}\end{array}\right.$

We quantify extrapolation for a controller \mathbf{K} by its performance on initial states in \mathcal{U}

Quantifying Extrapolation

Optimality Condition: K minimizes the training cost if and only if $\underbrace{\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}=0}$ for all $\mathrm{x}_{0} \in \mathcal{S}$
\mathbf{K} sends \mathbf{x}_{0} to zero
Let \mathcal{U} be an arbitrary orthonormal basis of \mathcal{S}^{\perp}
Controllers minimizing the training cost $\left\{\begin{array}{l}\text { produce identical controls for states in } \mathcal{S} \\ \text { differ arbitrarily in their controls for states in } \mathcal{U}\end{array}\right.$
We quantify extrapolation for a controller \mathbf{K} by its performance on initial states in \mathcal{U}

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}
$$

Quantifying Extrapolation: Baseline Controllers

-

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbb{K}) \mathbf{x}_{0}\right\|^{2}
$$

Quantifying Extrapolation: Baseline Controllers

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbb{K}) \mathbf{x}_{0}\right\|^{2}
$$

Perfectly Extrapolating $\mathrm{K}_{\text {ext }}$

Quantifying Extrapolation: Baseline Controllers

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbf{K}) \mathbf{x}_{0}\right\|^{2}
$$

Perfectly Extrapolating $K_{\text {ext }}$

Satisfies $\left(\mathbf{A}+\mathbf{K}_{\text {ext }}\right) \mathbf{x}_{0}=\mathbf{0}$ for all $\mathbf{x}_{0} \in \mathbb{R}^{D}$

Quantifying Extrapolation: Baseline Controllers

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbb{K}) \mathbf{x}_{0}\right\|^{2}
$$

Perfectly Extrapolating $\mathrm{K}_{\text {ext }}$

Satisfies $\left(\mathbf{A}+\mathbf{K}_{\text {ext }}\right) \mathbf{x}_{0}=\mathbf{0}$ for all $\mathbf{x}_{0} \in \mathbb{R}^{D}$

Minimizes the training cost and

$$
\mathcal{E}\left(\mathbf{K}_{\mathrm{ext}}\right)=0
$$

Quantifying Extrapolation: Baseline Controllers

 -
Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbb{K}) \mathbf{x}_{0}\right\|^{2}
$$

Perfectly Extrapolating $\mathrm{K}_{\text {ext }}$

Non-Extrapolating $\mathbf{K}_{\text {no-ext }}$

Satisfies $\left(\mathbf{A}+\mathbf{K}_{\text {ext }}\right) \mathbf{x}_{0}=\mathbf{0}$ for all $\mathbf{x}_{0} \in \mathbb{R}^{D}$

Minimizes the training cost and

$$
\mathcal{E}\left(\mathbf{K}_{\mathrm{ext}}\right)=0
$$

Quantifying Extrapolation: Baseline Controllers

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbb{K}) \mathbf{x}_{0}\right\|^{2}
$$

Perfectly Extrapolating $\mathrm{K}_{\mathrm{ext}}$

Satisfies $\left(\mathbf{A}+\mathbf{K}_{\text {ext }}\right) \mathbf{x}_{0}=\mathbf{0}$ for all $\mathbf{x}_{0} \in \mathbb{R}^{D}$

Minimizes the training cost and

$$
\mathcal{E}\left(\mathbf{K}_{\mathrm{ext}}\right)=0
$$

Non-Extrapolating $\mathrm{K}_{\mathrm{no} \text {-ext }}$

$$
\text { Satisfies }\left(\mathbf{A}+\mathbf{K}_{\text {no-ext }}\right) \mathbf{x}_{0}= \begin{cases}\mathbf{0} & , \mathbf{x}_{0} \in \mathcal{S} \\ \mathbf{A} \mathbf{x}_{0} & , \mathbf{x}_{0} \in \mathcal{U}\end{cases}
$$

Quantifying Extrapolation: Baseline Controllers

Extrapolation Error

$$
\mathcal{E}(\mathbf{K}):=\frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_{0} \in \mathcal{U}}\left\|(\mathbf{A}+\mathbb{K}) \mathbf{x}_{0}\right\|^{2}
$$

Perfectly Extrapolating $\mathrm{K}_{\text {ext }}$

Satisfies $\left(\mathbf{A}+\mathbf{K}_{\text {ext }}\right) \mathbf{x}_{0}=\mathbf{0}$ for all $\mathbf{x}_{0} \in \mathbb{R}^{D}$

Minimizes the training cost and

$$
\mathcal{E}\left(\mathbf{K}_{\mathrm{ext}}\right)=0
$$

Intuition: Extrapolation Depends on Exploration

Intuition Behind Our Analysis: Extrapolation depends on degree of exploration induced by the system from training initial states

Intuition: Extrapolation Depends on Exploration

Intuition Behind Our Analysis: Extrapolation depends on degree of exploration induced by the system from training initial states

Policy Gradient Iterate t Controller
State Dynamics: A $+\mathbf{K}^{(t)}$

- initial state seen in training
- state explored during policy gradient
- state unexplored during policy gradient

Intuition: Extrapolation Depends on Exploration

Intuition Behind Our Analysis: Extrapolation depends on degree of exploration induced by the system from training initial states

- initial state seen in training
- state explored during policy gradient
- state unexplored during policy gradient

Intuition: Extrapolation Depends on Exploration

Intuition Behind Our Analysis: Extrapolation depends on degree of exploration induced by the system from training initial states

Policy Gradient Final Controller
State Dynamics: A $+\mathbf{K}_{\mathrm{pg}}$

- initial state seen in training
- state explored during policy gradient
- state unexplored during policy gradient

Extrapolation Requires Exploration

Extrapolation Requires Exploration

$\mathbf{K}^{(t)}$ - the policy gradient controller at iteration t
\mathcal{S} - initial states seen in training

Extrapolation Requires Exploration

$\mathbf{K}^{(t)}$ - the policy gradient controller at iteration t
\mathcal{S} - initial states seen in training
$\mathcal{X}_{\mathrm{pg}}$ - the set of states encountered during policy gradient

Extrapolation Requires Exploration

$\mathbf{K}^{(t)}$ - the policy gradient controller at iteration t
\mathcal{S} - initial states seen $\mathcal{X}_{\mathrm{pg}}$ - the set of states encountered in training during policy gradient

Proposition - Exploration is Necessary for Extrapolation

Extrapolation Requires Exploration

$\mathbf{K}^{(t)}$ - the policy gradient controller at iteration t
\mathcal{S} - initial states seen $\mathcal{X}_{\mathrm{pg}}$ - the set of states encountered in training during policy gradient

Proposition - Exploration is Necessary for Extrapolation

- For any $\mathbf{x} \in \mathcal{X}_{\mathrm{pg}}^{\perp}$ the controls produced by $\mathbf{K}^{(t)}$ and $\mathbf{K}_{\mathrm{no}-\mathrm{ext}}$ are the same

Extrapolation Requires Exploration

$\mathbf{K}^{(t)}$ - the policy gradient controller at iteration t
\mathcal{S} - initial states seen $\mathcal{X}_{\mathrm{pg}}$ - the set of states encountered in training during policy gradient

Proposition - Exploration is Necessary for Extrapolation

- For any $\mathbf{x} \in \mathcal{X}_{\mathrm{pg}}^{\perp}$ the controls produced by $\mathbf{K}^{(t)}$ and $\mathbf{K}_{\mathrm{no}-\mathrm{ext}}$ are the same
- There exist systems s.t. $\mathcal{X}_{\mathrm{pg}} \subseteq \operatorname{span}(\mathcal{S})$ and $\mathcal{E}\left(\mathbf{K}^{(t)}\right)=\mathcal{E}\left(\mathbf{K}_{\text {no-ext }}\right)$

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Simple "Shift" Setting

- Consider training initial state \mathbf{e}_{1}
- first standard basis vector

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Simple "Shift" Setting

- Consider training initial state \mathbf{e}_{1}
- first standard basis vector
- The trajectory steered by $\mathbf{K}^{(0)}$
is $\mathbf{e}_{1}, \mathbf{A} \mathbf{e}_{1}, \ldots, \mathbf{A}^{H-1} \mathbf{e}_{1}$

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Simple "Shift" Setting

- Consider training initial state \mathbf{e}_{1} - first standard basis vector
- The trajectory steered by $\mathbf{K}^{(0)}$ is $\mathbf{e}_{1}, \mathbf{A e}_{1}, \ldots, \mathbf{A}^{H-1} \mathbf{e}_{1}$

$$
\longrightarrow \mathbf{A}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

Ensures trajectory spans whole state space

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Simple "Shift" Setting

- Consider training initial state \mathbf{e}_{1} - first standard basis vector
- The trajectory steered by $\mathbf{K}^{(0)}$ is $\mathbf{e}_{1}, \mathbf{A e}_{1}, \ldots, \mathbf{A}^{H-1} \mathbf{e}_{1}$

$$
\longrightarrow \mathbf{A}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

Proposition

Policy gradient converges to \mathbf{K}_{pg}, which minimizes the training cost and:

$$
\mathcal{E}\left(\mathbf{K}_{\mathrm{pg}}\right) \ll \mathcal{E}\left(\mathbf{K}_{\mathrm{no}-\mathrm{ext}}\right)
$$

Extrapolation in Exploration-Inducing Setting

Q: Exploration is necessary for extrapolation, but can it be sufficient?

Simple "Shift" Setting

- Consider training initial state \mathbf{e}_{1} - first standard basis vector
- The trajectory steered by $\mathbf{K}^{(0)}$ is $\mathbf{e}_{1}, \mathbf{A e}_{1}, \ldots, \mathbf{A}^{H-1} \mathbf{e}_{1}$

$$
\longrightarrow \mathbf{A}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

Ensures trajectory spans whole state space

Proposition

Policy gradient converges to \mathbf{K}_{pg}, which minimizes the training cost and:

$$
\mathcal{E}\left(\mathbf{K}_{\mathrm{pg}}\right) \ll \mathcal{E}\left(\mathbf{K}_{\mathrm{no}-\mathrm{ext}}\right)
$$

where perfect extrapolation is attained when the horizon $H \rightarrow \infty$

Extrapolation in Typical Setting

Q: We saw two ends of a spectrum, but which type of extrapolation do we typically get?

Extrapolation in Typical Setting

Q: We saw two ends of a spectrum, but which type of extrapolation do we typically get?

Typical Setting

- Arbitrary training initial state \mathbf{x}_{0}

Extrapolation in Typical Setting

Q: We saw two ends of a spectrum, but which type of extrapolation do we typically get?

Typical Setting

- Arbitrary training initial state \mathbf{x}_{0}
state dimension
- Random \mathbf{A} with entries sampled indepently from $\mathcal{N}(0,1 / D)$

Extrapolation in Typical Setting

Q: We saw two ends of a spectrum, but which type of extrapolation do we typically get?

Typical Setting

- Arbitrary training initial state \mathbf{x}_{0}
state dimension
- Random \mathbf{A} with entries sampled indepently from $\mathcal{N}(0,1 / D)$

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

Extrapolation in Typical Setting

Q: We saw two ends of a spectrum, but which type of extrapolation do we typically get?

Typical Setting

- Arbitrary training initial state \mathbf{x}_{0}

> state dimension

- Random \mathbf{A} with entries sampled indepently from $\mathcal{N}(0,1 / D)$

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\mathrm{no}-\mathrm{ext}}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Extrapolation in Typical Setting

Q: We saw two ends of a spectrum, but which type of extrapolation do we typically get?

Typical Setting

- Arbitrary training initial state \mathbf{x}_{0}

> state dimension

- Random \mathbf{A} with entries sampled indepently from $\mathcal{N}(0,1 / D)$

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\text {no-ext }}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Additionally, extrapolation occurs with high probability if D is large

Extrapolation in Typical Setting: Proof Idea and Limitations

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\text {no-ext }}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Additionally, extrapolation occurs with high probability if D is large

Proof Idea:

Extrapolation in Typical Setting: Proof Idea and Limitations

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\mathrm{no}-\mathrm{ext}}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Additionally, extrapolation occurs with high probability if D is large

Proof Idea:

- Intuition: Random system generically induces exploration

Extrapolation in Typical Setting: Proof Idea and Limitations

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\text {no-ext }}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Additionally, extrapolation occurs with high probability if D is large

Proof Idea:

- Intuition: Random system generically induces exploration
- Convert intuition to formal guarantee via tools from random matrix theory and topology

Extrapolation in Typical Setting: Proof Idea and Limitations

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\text {no-ext }}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Additionally, extrapolation occurs with high probability if D is large

Proof Idea:

- Intuition: Random system generically induces exploration
- Convert intuition to formal guarantee via tools from random matrix theory and topology

Limitations: Condition on learning rate + only second iterate of policy gradient

Extrapolation in Typical Setting: Proof Idea and Limitations

Theorem

If the learning rate η is sufficiently small, a single iteration of policy gradient leads to non-trivial extrapolation:

$$
\mathbb{E}\left[\mathcal{E}\left(\mathbf{K}^{(1)}\right)\right] \leq \mathbb{E}\left[\mathcal{E}\left(\mathbf{K}_{\text {no-ext }}\right)\right]-\Omega\left(\eta \cdot \frac{H^{2}}{D}\right)
$$

Additionally, extrapolation occurs with high probability if D is large

Proof Idea:

- Intuition: Random system generically induces exploration
- Convert intuition to formal guarantee via tools from random matrix theory and topology

Limitations: Condition on learning rate + only second iterate of policy gradient
experiments suggest these limitations may be alleviated

Implicit Bias in Optimal Control $=$ E Euclidean Norm Minimization

\square

Supervised Learning

Task: Linear regression
Known (e.g. Zhang et al. 2017): Implicit bias minimizes
Euclidean norm

Implicit Bias in Optimal Control $=$ E Euclidean Norm Minimization

Implicit Bias in Optimal Control $=$ E Euclidean Norm Minimization

Supervised Learning

Task: Linear regression
Known (e.g. Zhang et al. 2017): Implicit bias minimizes Euclidean norm

Optimal Control

Task: LQR
Our Work: Implicit bias does not minimize
Euclidean norm

Implicit Bias in Optimal Control $=$ E Euclidean Norm Minimization

Task: Linear regression
Known (e.g. Zhang et al. 2017): Implicit bias minimizes Euclidean norm

Optimal Control

Task: LQR
Our Work: Implicit bias does not minimize Euclidean norm

Corollary

Among controllers minimizing the training cost, $\mathbf{K}_{\text {no-ext }}$ has the minimal Euclidean norm

Implicit Bias in Optimal Control $=$ E Euclidean Norm Minimization

Task: Linear regression
Known (e.g. Zhang et al. 2017): Implicit bias minimizes Euclidean norm

Optimal Control

Task: LQR
Our Work: Implicit bias does not minimize Euclidean norm

Corollary

Among controllers minimizing the training cost, $\mathbf{K}_{\text {no-ext }}$ has the minimal Euclidean norm
\longrightarrow Extrapolation implies policy gradient does not implicitly minimize Euclidean norm

Main Contributions: Effect of Implicit Bias on Extrapolation

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?

Theory for the Linear Quadratic Regulator (LQR) Problem: Extrapolation depends on an interplay between the system and initial states seen in training

Experiments:

Support theory for LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

Experiments: Analyzed LQR Problems

Experiments: Analyzed LQR Problems

Experiments: Analyzed LQR Problems

In accordance with our theory:
(1) No extrapolation occurs under the identity system, while for the shift and random systems we have non-trivial extrapolation (yet not perfect)

Experiments: Non-Linear Systems and Neural Network Controllers

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Phenomenon
extends to non-linear systems and neural network controllers

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Phenomenon
extends to non-linear systems and neural network controllers

Pendulum Control Problem
(analogous experiments for a
quadcopter control problem)

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Phenomenon
extends to non-linear systems and neural network controllers

Pendulum Control Problem
(analogous experiments for a quadcopter control problem)
\approx target state

- initial state seen in training
- initial state unseen in training

Initial States (time step 0)

Experiments: Non-Linear Systems and Neural Network Controllers

Experiments: Phenomenon
extends to non-linear systems and neural network controllers

Pendulum Control Problem
(analogous experiments for a quadcopter control problem)
\approx target state

- initial state seen in training
- initial state unseen in training

Initial States (time step 0)

Policy Gradient Controller Final States (time step 100)

> Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Phenomenon
extends to non-linear systems and neural network controllers

Pendulum Control Problem
(analogous experiments for a quadcopter control problem)
\approx target state

- initial state seen in training
- initial state unseen in training

Initial States (time step 0)

Policy Gradient Controller Final States (time step 100)

Non-Extrapolating Controller
Final States (time step 100)

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory: Linear system induces exploration from initial states seen in training \longrightarrow Linear controller typically extrapolates

Experiments: Phenomenon
extends to non-linear systems and neural network controllers

Pendulum Control Problem
(analogous experiments for a quadcopter control problem)
\approx target state

- initial state seen in training
- initial state unseen in training

Policy Gradient Controller

Final States (time step 100)

Non-Extrapolating Controller
Final States (time step 100)

(1) The controller learned via policy gradient extrapolates despite existence of non-extrapolating controllers

Conclusion: Implicit Bias of Policy Gradient in Optimal Control

Q: To what extent does the implicit bias of policy gradient lead to
extrapolation to initial states unseen in training?

Conclusion: Implicit Bias of Policy Gradient in Optimal Control

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?

Theory for the LQR Problem:
Extrapolation depends on
exploration induced by the system
from initial states seen in training

Conclusion: Implicit Bias of Policy Gradient in Optimal Control

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?
$\left(\begin{array}{cccc}0 & 1 & 0 & \cdots \\ 1 & 1 & \ldots \\ 0 & 1 & \ldots & 1 \\ 0 & 1 & \ldots \\ 0 & 1 & 0 & 0 \\ 0 & 1 & \cdots & 1\end{array}\right)$
Theory for the LQR Problem:
Extrapolation depends on
exploration induced by the system from initial states seen in training

Experiments: Support theory for
LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

Conclusion: Implicit Bias of Policy Gradient in Optimal Control

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?

Theory for the LQR Problem:
Extrapolation depends on
exploration induced by the system from initial states seen in training

Experiments: Support theory for
LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

Going Forward:

Conclusion: Implicit Bias of Policy Gradient in Optimal Control

\qquad

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?

Theory for the LQR Problem:
Extrapolation depends on
exploration induced by the system from initial states seen in training

Experiments: Support theory for LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

Going Forward:

- Theory for non-linear systems and neural network controllers

Conclusion: Implicit Bias of Policy Gradient in Optimal Control

\qquad

Q: To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?

Theory for the LQR Problem:
Extrapolation depends on
exploration induced by the system from initial states seen in training

Experiments: Support theory for LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

Going Forward:

- Theory for non-linear systems and neural network controllers
- Enhancing extrapolation via methods for selecting initial states to train on

Outlook

Optimization and Implicit Bias in Optimal Control/Reinforcement Learning

Optimization and Implicit Bias in Optimal Control/Reinforcement Learning

Supervised Learning

Optimization and implicit bias have been extensively studied

Optimization and Implicit Bias in Optimal Control/Reinforcement Learning

Optimization and implicit bias have been extensively studied

Optimal Control/Reinforcement Learning

Our Results: Optimization and implicit bias can substantially differ from those in supervised learning, hence require dedicated study

Optimization and Implicit Bias in Optimal Control/Reinforcement Learning

```
\square
```

Supervised Learning

Optimization and implicit bias have been extensively studied

Optimal Control/Reinforcement Learning

Our Results: Optimization and implicit bias can substantially differ from those in supervised learning, hence require dedicated study
(1) Studying optimization and implicit bias in optimal control/reinforcement learning may allow addressing their unique challenges

Thank You!

Work supported by:
Apple scholars in AI/ML PhD fellowship, Google Research Scholar Award, Google Research Gift, the Yandex Initiative in Machine Learning, the Israel Science Foundation (grant 1780/21), Len Blavatnik and the Blavatnik Family Foundation, Tel Aviv University Center for AI and Data Science, and Amnon and Anat Shashua

[^0]: (e.g., Neyshabur et al. 2014, Gunasekar et al. 2017, Soudry et al. 2018, Arora et al. 2019, Ji \& Telgarsky 2019; R et al. 2020/21/22, Pesme et al. 2021, Lyu et al 2021, Boursier et al. 2022, Andriushchenko et al. 2023, Frei et al. 2023, Jin \&
 Montúfar 2023, Abbe et al. 2023)

[^1]: (e.g., Neyshabur et al. 2014, Gunasekar et al. 2017, Soudry et al. 2018, Arora et al. 2019, Ji \& Telgarsky 2019; R et al. 2020/21/22, Pesme et al. 2021, Lyu et al. 2021, Boursier et al. 2022, Andriushchenko et al. 2023, Frei et al. 2023, Jin \& Montúfar 2023, Abbe et al. 2023)

