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Gradient-based methods are the workhorse behind
optimization and generalization in modern machine learning
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Task: Learn predictor minimizing loss over
labeled data

Training Algorithm: Gradient descent

Optimization Dynamics and Implicit Bias

Extensively Studied
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Task: Learn policy minimizing cost/maximizing
reward over dynamical system

Training Algorithm: Policy gradient

Optimization Dynamics and Implicit Bias

(Limited Understanding

(Fazel et al. 2018, Mei et al. 2020, Hu et al. 2021)
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Vanishing Gradients in Reinforcement Finetuning "
Optimization of Language Models

R + Zhou + Saremi + Thilak + Bradley + Nakkiran + Susskind + Littwin | ICLR 2024

Implicit Bias of Policy Gradient in Linear Quadratic Control:
Implicit Bias Extrapolation to Unseen Initial States

R + Alexander + Cohen-Karlik + Giryes + Globerson + Cohen | arXiv 2024
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Vanishing Gradients in Reinforcement Finetuning
of Language Models

R + Zhou + Saremi + Thilak + Bradley + Nakkiran + Susskind + Littwin | ICLR 2024
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Language Model (LM): Neural network trained on large amounts of
text data to produce a distribution over text
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Input x LM Do Output y

§ - parameters

LMs are typically autoregressive pg(v|x) = Hlel po(Ui]x, y<i—1)
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softmax is used for producing
next-token probabilities
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L Ms are adapted to human preferences and downstream tasks via finetuning

Supervised Finetuning (SFT)
Minimize cross entropy loss over labeled inputs via gradient-based methods
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Limitations:
&3 Hard to formalize human preferences through labels
©) Labeled data is expensive
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Reinforcement Finetuning (RFT)
Maximize reward over unlabeled inputs via policy gradient algorithms

reward function r(x,y)

Expected reward for input x: Vy(x) = Ey p, (1x) [7(%, )]

Reward function 7(x,y) can be:

& Learned from human preferences ©OA Tailored to a downstream task
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Vanishing Gradients Due to Small Reward Standard Deviation (STD)

STDyp, (1% [7(x%,y)] — reward std of x under the model

Theorem O Expected gradient for an input
2/3 vanishes when reward std is small,
IVoVo(x)|| = O(STDywpe(-lx) (%, y)] ) even if reward mean is suboptimal

*Same holds for PPO gradient

Proof Idea: Stems from use of softmax + reward maximization objective

Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

Can be problematic when finetuning text distribution differs from pretraining
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Benchmark: GRUE (Ramamurthy et al. 2023)

Finding |

7 language generation datasets

Models: GPT-2 and T5-base

vanishing gradients
A
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A Few SFT Steps on a Small Number of Samples Suffice

Limitation of Initial SFT Phase: Requires labeled data @)

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT
=) A few steps of SFT on small # of labeled samples should suffice

Result

Using 1% of labeled samples and 40% of steps for initial SFT
allows RFT to reach roughly same reward as with “full” initial SFT

® The initial SFT phase does not need to be expensive!
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Conclusion: Vanishing Gradients in RFT

Expected gradient for an input vanishes in RFT

VoV ~0 | . -
oVo(x) if the input’s reward std is small

n Vanishing gradients in RFT are prevalent and
detrimental to maximizing reward

(} Initial SFT phase allows overcoming vanishing
%/ gradients in RFT, and does not need to be expensive

!

® Reward std is a key quantity to track for successful RFT
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Implicit Bias of Policy Gradient in Linear Quadratic Control:
Extrapolation to Unseen Initial States

R + Alexander + Cohen-Karlik + Giryes + Globerson + Cohen | arXiv 2024
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Optimal Control Problem

@ System: Starting from an initial state xg

Xh_|_1:f(Xh,uh) h:O,...,H—l

7 /

state control time horizon

@ Goal: Choose controls that minimize

the cost 37, ¢(xn, up)

Policy Gradient

Parameterize controller (e.g. as
neural network)

V' Minimize cost via gradient descent
w.r.t. controller parameters
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Issue of Prime Importance: Extrapolation Often multiple controllers minimize cost
to initial states unseen in training for initial states seen in training
2 7™
™. °4a° ﬁ =) Extrapolation is determined by the

implicit bias of policy gradient

Effect of implicit bias on extrapolation was theoretically studied in supervised learning

g ~ _J (Xu et al. 2021, Abbe et al. 2022/23, Cohen-Karlik et al. 2022/23)

not understood in optimal control
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Experiments:
Support theory for LQR and demonstrate its conclusions
apply to non-linear systems and neural network controllers
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LQR Problem (state x; € RP |

control u;, € RM)

r

@ Linear System

Xpt1 = Axy + Buy,

~N

For training set of initial states S ¢ RP the controller is learned by minimizing the training cost:

costs(K

r

) =

@3 Quadratic Costs

H
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LQR Problem (state x; € R” | control u; € RM)

r

@ Linear System

Xpt1 = Axy + Buy,

~N

For training set of initial states S ¢ RP the controller is learned by minimizing the training cost:

r

@3 Quadratic Costs

H
> heo X Qxp +u, Ruy,
.

r

Linear Controller

u, — KXh

J

H
costs(K) = ﬁ > xoes oneoXn (Q+ KTRK)x,

Learning the controller via policy gradient amounts to:

KD = K® —p . Veosts(KM)
learning rate 7

initialization K(© = 0

22/ 38
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Training cost: costs(K) = I?ll D xoES ZhH:o x; (Q+K'RK)xy,

Existing Analyses of Policy Gradient in LQR (e.g. Fazel et al. 2018, Malik et al. 2019, Bu et al. 2019/20)

Typically assume that:
«  Cost matrix R is positive definite — controls are regularized

 Training set of initial states S spans R”

m==) Training cost has a unique minimizer

Under these assumptions implicit bias is irrelevant
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Setting: Underdetermined LQR

Training cost: costs(K) = 31 Eyyes Snmoll(A + K)o

Underdetermined LQR

R = 0 — controls are not regularized

- Training set of initial states S does not span R B=Q=1

In this setting the training cost has multiple minimizers

For simplicity:

24/ 38
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Optimality Condition: K minimizes the training cost if and only if ||[(A + K)xg||* =0 forall xg € S

\ . J/
Y

K sends xg to zero

Let ¢/ be an arbitrary orthonormal basis of S+

produce identical controls for statesin S
Controllers minimizing the training cost {

differ arbitrarily in their controls for states in &/

We quantify extrapolation for a controller K by its performance on initial states in U

Extrapolation Error

E(K) = 7 Dxoeull(A + K)xol|?
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Extrapolation Error
E(K) = i Docurll (A + K)xq|?
Perfectly Extrapolating K. Non-Extrapolating K, .t
. g . 0 ,Xg €S
Satisfies (A + Kext)xo = 0 for all xg € RP Satisfies (A + Kio-ext )Xo = N
AXO , X0 € U

Minimizes the training cost and Minimizes the training cost but
E(Kext) =0 € (Kpo-ext) is typically high
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Intuition Behind Our Analysis: Extrapolation depends on degree of exploration induced by the
system from training initial states

Policy Gradient Iterate ¢t Controller Non-Extrapolating Controller Policy Gradient Final Controller
State Dynamics: A + K State Dynamics: A + K o_ext State Dynamics: A + Ky,
— — —
S - — S \ / s O | T

[ g
C 0 / C 0 \ d / C . Lt ___________________ y

initial state seen in training
state explored during policy gradient

state unexplored during policy gradient
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Extrapolation Requires Exploration

K®) — the policy gradient controller S —initial statesseen &}, — the set of states encountered
at iterationt in training during policy gradient

Proposition — Exploration is Necessary for Extrapolation

- Forany x € X, the controls produced by K® and K, are the same

- There exist systems s.t. X, C span(S) and £(K®) = (K o-ext)
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Q: Exploration is necessary for extrapolation, but can it be sufficient? @

Simple “Shift” Setting

- Consider training initial state e ((1) 8 8 8 é\
— first standard basis vector A_lo 10 - 00 Ensures trajectory spans
- The trajectory steered by K(©) e
is el,Ael,...,AH_lel \O o 0 --- 1 0)
Proposition

Policy gradient converges to K., which minimizes the training cost and:
E(Kpg) << E(Kno-ext)

where perfect extrapolation is attained when the horizon H — o
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Theorem

If the learning rate n is sufficiently small, a single iteration of policy gradient
leads to non-trivial extrapolation:

E[E(K(U)] < E[S(Kno-ext)] o 9(77 ) %2)

Additionally, extrapolation occurs with high probability if D is large

Proof Idea:
* Intuition: Random system generically induces exploration

« Convert intuition to formal guarantee via tools from random matrix theory and topology

Limitations: Condition on learning rate + only second iterate of policy gradient

A\ J
Y

experiments suggest these limitations may be alleviated
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Supervised Learning Optimal Control
’ ?
Te “':.: . e
8 — \{/
wr
Task: Linear regression Task: LQR
Known (e.g. Zhang et al. 2017): Implicit bias minimizes Our Work: Implicit bias does not minimize
Euclidean norm Euclidean norm

Corollary

Among controllers minimizing the training cost, K ,,-cxt has the minimal Euclidean norm

mm) Extrapolation implies policy gradient does not implicitly minimize Euclidean norm
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Experiments: Analyzed LQR Problems

1.0 A

0.8
LQR Problem
0.6 - - N identity (no extrapolation)
- - W random
: shift
0.2 -
0.0
1 2 3 4

Number of Initial States Seen in Training

Normalized
Extrapolation Error

In accordance with our theory:

® No extrapolation occurs under the identity system, while for the shift
and random systems we have non-trivial extrapolation (yet not perfect)
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Our Theory: Linear system induces exploration
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Our Theory: Linear system induces exploration
from initial states seen in training === Linear

controller typically extrapolates

Pendulum Control Problem
(analogous experiments for a
quadcopter control problem)

¥ target state

@ initial state seen in training
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Experiments: Phenomenon
extends to non-linear systems and
neural network controllers

Policy Gradient Controller Non-Extrapolating Controller
Final States (time step 100) Final States (time step 100)

| ﬁ

® The controller learned via policy gradient extrapolates
despite existence of non-extrapolating controllers
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Conclusion: Implicit Bias of Policy Gradient in Optimal Control

Q: To what extent does the implicit bias of policy gradient lead to
extrapolation to initial states unseen in training?

toi: 1| Theory for the LQR Problem: %> Experiments: Support theory for
010 1) Extrapolation depends on LD LQR and demonstrate its conclusions
exploration induced by the system apply to non-linear systems and
from initial states seen in training neural network controllers
Going Forward:

* Theory for non-linear systems and neural network controllers

* Enhancing extrapolation via methods for selecting initial states to train on
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Outlook



Optimization and Implicit Bias in Optimal Control/Reinforcement Learning



38/38
Optimization and Implicit Bias in Optimal Control/Reinforcement Learning

Supervised Learning

Optimization and implicit bias have been
extensively studied
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Our Results: Optimization and implicit bias can
substantially differ from those in supervised
learning, hence require dedicated study

Optimization and implicit bias have been
extensively studied

® Studying optimization and implicit bias in optimal control/reinforcement
learning may allow addressing their unique challenges
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