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Challenge
Develop mathematical theory for GNNs

Fundamental Question
Expressivity: Which functions can GNNs realize?

/ all functions over graphs \

functions GNNs can realize
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Theoretical analysis of GNN expressivity is an active area

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019a, Maron et al. 2019b, Keriven & Peyré 2019, Chen et al. 2019, Dehmamy
et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020, Azizian & Lelarge 2021, Geerts & Reutter 2022, Zhang et al. 2023)

Limitations: Despite recent progress, existing analyses
(1) Often treat regimes of unbounded width or depth

(2) Do not formalize ability to model interactions between vertices

Q: How do graph structure and GNN architecture affect interactions?
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GNNis for Vertex vs Graph Prediction

After L layers the GNN produces h<L’1), C pLIVD

Graph Prediction: Single output for the whole graph
OH

HOD/'VNHZ GNN(X) = W aca(htV .. ALV
HO

Vertex Prediction: Output forevery t € V

GNN®(X) = W p Lt
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» Analyses of convolutional, recurrent, and self-attention NNs
(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, R et al. 2022)
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Separation Rank: Formal Definition

Let f: (R”)" — R and subset of variables 7 C {1,..., N}

TCEEEE)

sep(f;Z) :=min R s.t. f(X) = Zle 9r(X7) - g (X7e)

Higher sep(f;Z) wms stronger interaction between X7 and X .



12/34

Definition: Walk Index (WI) of a Partition of Vertices

O—0@ 090
KA 7°
O—0 9



12/34

Definition: Walk Index (WI) of a Partition of Vertices

____________

____________

boundary



12/34

Definition: Walk Index (WI) of a Partition of Vertices

____________

® o o o
T | 7
0 @
boundary

Graph Prediction (with depth L GNN)

W1y 1(Z) := #length L — 1 walks from boundary



Definition: Walk Index (WI) of a Partition of Vertices

]
‘ ". ‘ walk #1 walk #2
o—o—@® @ - S =

____________

Example: length two walks
boundary

Graph Prediction (with depth L GNN)

W1y 1(Z) := #length L — 1 walks from boundary

walk #48

_—_— - -

—— == = —

12/34



12/34

Definition: Walk Index (WI) of a Partition of Vertices

]
® "‘ ® walk #1 walk #2 walk #48
*———e0e e - - - - __ K

____________

Example: length two walks
boundary

Graph Prediction (with depth L GNN)

W1y 1(Z) := #length L — 1 walks from boundary

Vertex Prediction (with depth L GNN)

W11 +(Z) := #length L — 1 walks from boundaryto ¢t € V



13/34

Main Result: Strength of Interaction <« Walk Index

Theorem

For adepth L GNNwithwidth D andZ C V.

____________

____________



13/34

Main Result: Strength of Interaction <« Walk Index

Theorem

For adepth L GNNwithwidth D andZ C V.

(graph prediction)  sep(GNN;Z) = DOWlz—1(Z))

____________

____________



13/34

Main Result: Strength of Interaction <« Walk Index

Theorem

For adepth L GNNwithwidth D andZ C V.
(graph prediction) sep(GNN:;T) = DOWIL_1(2))

(vertex prediction)  sep(GNNW:T) = DO(Wir—1.:(1))

____________

____________



13/34

Main Result: Strength of Interaction <« Walk Index

Theorem

For adepth L GNNwithwidth D andZ C V:
(graph prediction)  sep(GNN;Z) = DOWlz—1(Z))

(vertex prediction) sep(GNN(t);I) — DOWIL_1,:(T))

* Nearly matching lower bounds

____________

____________



13/34

Main Result: Strength of Interaction <« Walk Index

Theorem

For adepth L GNNwithwidth D andZ C V:
(graph prediction)  sep(GNN;Z) = DOWlz—1(Z))

(vertex prediction) sep(GNN(t);I) — DOWIL_1,:(T))

* Nearly matching lower bounds

____________

o—0—0—o0 ® Walk index of a partition controls strength of interaction

____________



13/34

Main Result: Strength of Interaction <« Walk Index
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For adepth L GNNwithwidth D andZ C V:
(graph prediction)  sep(GNN;Z) = DOWlz—1(Z))

(vertex prediction)  sep(GNNW:T) = DOWIL—1.:(2))

* Nearly matching lower bounds

____________

oo o o O Walk index of a partition controls strength of interaction
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1 ® | PR 5 L Experiment: Implications of theory apply to widespread
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Edge Sparsification

Computations over large-scale graphs are expensive

Edge Sparsification: Removing edges while maintaining graph properties
(e.g. Baswana & Sen 2007, Spielman & Srivastava 2011, Hamann et al 2016)

In the context of GNNSs, goal is to maintain accuracy when removing edges

Our theory leads to a simple & effective algorithm for pruning edges
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Algorithm: Walk Index Sparsification (WIS)

Idea: Greedily prune edge whose removal harms interactions the least

Theory: Leads to general scheme relying on walk indices

We focus here on vertex prediction (most relevant in large graphs)

Algorithm: Until desired # edges are removed

(1) Per edge, imagine it removed and compute walk indices for preselected partitions

(2) Remove edge that will keep maximal walk indices



Comparison of Edge Sparsification Methods

Experiment



17/34
Comparison of Edge Sparsification Methods

Experiment

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)



17/34
Comparison of Edge Sparsification Methods

Experiment

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)
Model: depth L = 3 GCN (similar results using GIN & ResGCN and additional datasets)



Comparison of Edge Sparsification Methods

Experiment

17/34

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN & ResGCN and additional datasets)

(0]
(6]

test accuracy (%)
~ oo
(0] o

~
o

Cora (small scale)

/ —@— spectral

—— random

—#— UGS
—¥— WIS (ours)

0 20 40 60 80
% of removed edges

100

test accuracy (%)

(o]
(6]

(o)
N

~
(o]

~
[0)]

DBLP (medium scale)

1 —— random

T —w— WIS (ours)

—@— spectral
—%— UGS

0 20 40 60 80 100

% of removed edges

70 A

test accuracy (%)

OGBN-ArXiv (large scale)

1 =

1 —— random

—&— spectral
UGS
—¥— WIS (ours)

0 20 40 60 80 100

% of removed edges




Comparison of Edge Sparsification Methods

Experiment

17/34

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN & ResGCN and additional datasets)

test accuracy (%)

85 A

80 A

75 1

70

Cora (small scale)

—— random
—0— spectral
—#— UGS
—¥— WIS (ours)

0 20 40 60 80
% of removed edges

100

test accuracy (%)

(o]
(6]

(o]
N

~
(o]

~
[0)]

DBLP (medium scale)

1 —— random

T —w— WIS (ours)

—@— spectral
—%— UGS

0 20 40 60 80 100

% of removed edges

70 A

test accuracy (%)

OGBN-ArXiv (large scale)

1 =

1 —— random

—&— spectral
UGS
—¥— WIS (ours)

0 20 40 60 80 100

% of removed edges

O WIS outperforms existing methods while being simple & efficient




Comparison of Edge Sparsification Methods

Experiment

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN & ResGCN and additional datasets)

test accuracy (%)

85 A

80 A

75 1

70

Cora (small scale)

—— random
—0— spectral
—#— UGS
—¥— WIS (ours)

0 20 40 60 80
% of removed edges

100

test accuracy (%)

(o]
(6]

(o]
N

~
(o]

~
[0)]

DBLP (medium scale)

1 —— random

T —w— WIS (ours)

—@— spectral
—%— UGS

0 20 40 60 80 100

% of removed edges

70 A

test accuracy (%)

17/ 34

OGBN-ArXiv (large scale)

1 =

1 —— random

—&— spectral
UGS
—¥— WIS (ours)

0 20 40 60 80 100

% of removed edges

O WIS outperforms existing methods while being simple & efficient




Conclusion: Ability of GNNs to Model Interactions



18/34

Conclusion: Ability of GNNs to Model Interactions

____________

Theory : .
Walk index of a partition controls strength T v
of interaction a GNN can model ® .0

____________




18/34

Conclusion: Ability of GNNs to Model Interactions

Theory P ®
Walk index of a partition controls strength T v
of interaction a GNN can model O .
Application

WIS: simple & efficient edge sparsification
algorithm that outperforms alternative methods

o9
»

Y
C*L;\‘o



18/34

Conclusion: Ability of GNNs to Model Interactions

Theory ® oo ®

Walk index of a partition controls strength | 5

of interaction a GNN can model ® 0 9

Appllfatlon N - e—o—0—o

WIS: simple & efficient edge sparsification \
—y-O

algorithm that outperforms alternative methods @ —@ —@& °

Going Forward: Studying modeled interactions may be key for



18/34

Conclusion: Ability of GNNs to Model Interactions

Theory ® oo ®

Walk index of a partition controls strength | 5

of interaction a GNN can model ® C 9

Appllfatlon N - e—o—0—o

WIS: simple & efficient edge sparsification \
—y-O

algorithm that outperforms alternative methods @ —@ —@& °

Going Forward: Studying modeled interactions may be key for

- Understanding aspects beyond expressivity (e.g. generalization)



Conclusion: Ability of GNNs to Model Interactions

Theory (T ‘
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Walk index of a partition controls strength T | v
of interaction a GNN can model ® .0

____________

Application

e o
WIS: simple & efficient edge sparsification T \/\
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O 0

algorithm that outperforms alternative methods

Going Forward: Studying modeled interactions may be key for

« Understanding aspects beyond expressivity (e.g. generalization)

* |Improving performance of GNNs beyond edge sparsification
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Language Models (LMs)

Language Model (LM): Neural network trained on large amounts of
(internet) text data to produce a distribution over text

4
I

-> e - =
Input x LM Do Output y

§ - parameters

LMs are typically autoregressive po(y|x) = H{;l po(U1]%, y<i—1)
\\ J

Y

softmax is used for producing
next-token probabilities
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Supervised Finetuning (SFT)
Minimize cross entropy loss over labeled inputs via gradient-based methods

=) ES) - (=)
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Limitations:
&3 Hard to formalize human preferences through labels
©) Labeled data is expensive
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Reinforcement Finetuning (RFT)
Maximize reward over unlabeled inputs via policy gradient algorithms

reward function r(x,y)

Expected reward for input x: Vy(x) = Ey p, (1x) [7(%, )]

Reward function 7(x,y) can be:

& Learned from human preferences ©OA Tailored to a downstream task

22/34
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STDyp, (1% [7(x%,y)] — reward std of x under the model

Theorem O Expected gradient for an input
2/3 vanishes when reward std is small,
IVoVo(x)|| = O(STDywpe(-lx) (%, y)] ) even if reward mean is suboptimal

*Same holds for PPO gradient

Proof Idea: Stems from use of softmax + reward maximization objective

Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

Can be problematic when finetuning text distribution differs from pretraining
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We saw that vanishing expected gradients is indicative of RFT performance
A\ J

measured by reward std

Possible Confounding Factor: Insufficient Exploration

Large output space in language generation === challenge of exploration
(e.g. Ranzato et al. 2016, Choshen et al. 2020)

===) challenge of accurately estimating VyVp(x)

Q: Does the difficulty of RFT to maximize reward stem from
vanishing gradients or just insufficient exploration?

® We address Q via controlled experiments and theoretical analysis
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Controlled Experiments

Environments with perfect exploration,
i.e. RFT has access to expected gradients
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Conclusion: Vanishing Gradients in RFT

Expected gradient for an input vanishes in RFT

VoVe(x) 20 it input’s reward std is small

n Experiments + theory: vanishing gradients in RFT are
prevalent and detrimental to maximizing reward

(} Initial SFT phase allows overcoming vanishing
%/ gradients in RFT, and does not need to be expensive

!

® Reward std is a key quantity to track for successful RFT
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