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Obtaining preference data can be easier than high-quality responses 
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Limitations of RLHF:

Often suffers from instabilities (e.g. vanishing gradients; R et al. 2024)

Expensive in terms of memory and compute
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(Pal et al. 2024; Yuan et al. 2024, Rafailov et al. 2024, Tajwar et al. 2024, Pang et al. 2024, Liu et al. 2024)

Likelihood Displacement

However, the probability of preferred responses often decreases!

Limited understanding of why likelihood displacement occurs and its implications
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Catastrophic Likelihood Displacement in Simple Settings

(e.g. Tajwar et al. 2024, Pal et al. 2024)Prior Work

Attributed likelihood displacement to:

Q: What is the simplest setting in which likelihood displacement occurs?

model capacity dataset size token overlap
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Prompt contains a statement from 
the Persona dataset (Perez et al. 2022)

Example: Is the following statement 
something you would say? “Doing bad 
things is sometimes necessary in order 
to accomplish important goals”

Preferred and dispreferred responses 
are synonyms of ”Yes” or “No”

Example: “Yes”, “Sure”, “No”, “Never”
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Setting: Train via DPO over a single prompt with single token responses

Likelihood displacement can be catastrophic, even in the simplest of settings
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Setting: Train a (moderately aligned) language model to refuse unsafe prompts via DPO
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Llama-3-8B-Instruct

unsafe prompt

response 1

response 2
Judge Model

refusals > non-refusals

y
+

y
−

For over 70% of prompts both responses are refusals 
(resembles “No” vs “Never” experiments)



Likelihood Displacement Can Cause Unintentional Unalignment

Likelihood displacement leads to unintentional unalignment!

Initial

DPO
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Main Contributions

Likelihood displacement can be catastrophic 
and lead to surprising failures in alignment

Theory: Likelihood displacement is driven by 
the model’s embedding geometry

Mitigating likelihood displacement via 
data filtering
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Theoretical Analysis of Likelihood Displacement: Approach

Goal: Characterize how                          changes during training

We track their evolution during training

Assumption: For simplicity, consider hidden embeddings as trainable parameters
(Suanshi et al. 2021, Zhu et al. 2021, Mixon et al. 2022, Ji et al. 2022, Tirer et al. 2023)

lnπθ(z|x)

response prompt

is determined by:lnπθ(z|x)

hidden embeddings hx,z<1
, . . . ,hx,z<|z|

1
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At any training step,                             decreases when the following are large:

Theorem: When does likelihood displacement occur? 

lnπθ (y+|x)

1
〈

Wy+ ,Wy−

〉

2
〈

Wz,Wy+ −Wy−

〉

for tokens z != y
+
,y

−

Intuition: similar preferences cause likelihood displacement
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Theorem: Where does the probability mass go?

The log probability change of       is proportional to: z
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Multiple Token Responses: Role of Hidden Embedding Geometry

Consider the typical case where         and          are sequencesy
+

y
−

At any training step, in addition to the dependence on token unembeddings,
                            decreases more the larger the following term is:

Theorem: When does likelihood displacement occur? 

lnπθ (y+|x)

preferred-dispreferred alignment preferred-preferred alignment

are determined by the model’s next-token distributions
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− embeddings

〉

−

∥
∥
∥

∑|y+|
k=1 hx,y+

<k

∥
∥
∥

2

*The CHES score is model-dependent

Our theory indicates that a higher CHES score 
leads to more likelihood displacement
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Main Contributions

Likelihood displacement can be catastrophic 
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Theory: Likelihood displacement is driven by 
the model’s embedding geometry

Mitigating likelihood displacement via 
data filtering
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Identifying Sources of Likelihood Displacement

Q: How indicative is the CHES score of likelihood displacement?

Llama-3-8B over UltraFeedback

CHES score identifies training samples causing likelihood 
displacement, whereas alternative measures do not

CHES Score

Edit Distance Similarity (Pal et al. 2024)

Hidden Embedding Similarity

*Similar results for OLMo-1B, Gemma-2B models
  and AlpacaFarm dataset

21 / 26



Data Filtering via CHES Score Mitigates Unintentional Unalignment

Recall: Unintentional unalignment due to likelihood displacement experiments

22 / 26



Data Filtering via CHES Score Mitigates Unintentional Unalignment

Recall: Unintentional unalignment due to likelihood displacement experiments

Initial

DPO

22 / 26



Data Filtering via CHES Score Mitigates Unintentional Unalignment

Initial

DPO

Recall: Unintentional unalignment due to likelihood displacement experiments

DPO over samples with lowest 
length-normalized CHES score

22 / 26



Data Filtering via CHES Score Mitigates Unintentional Unalignment

Initial

DPO

Recall: Unintentional unalignment due to likelihood displacement experiments

DPO over samples with lowest 
length-normalized CHES score

DPO + SFT  (e.g. Liu et al. 2024)

22 / 26



Data Filtering via CHES Score Mitigates Unintentional Unalignment

Initial

DPO

Recall: Unintentional unalignment due to likelihood displacement experiments

DPO over samples with lowest 
length-normalized CHES score

DPO + SFT  (e.g. Liu et al. 2024)

DPO (gold data)

22 / 26



Data Filtering via CHES Score Mitigates Unintentional Unalignment

Initial

DPO

Recall: Unintentional unalignment due to likelihood displacement experiments

DPO over samples with lowest 
length-normalized CHES score

DPO + SFT  (e.g. Liu et al. 2024)

DPO (gold data)

Removing samples with high CHES scores mitigates unintentional 
unalignment, and goes beyond adding an SFT term to the loss 
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Which Samples Have a High CHES Score?

CHES score ranking falls in line with intuition:
Samples with two refusal or two non-refusal 
responses tend to have a higher score than 
samples with one of each

23 / 26



Conclusion
24 / 26



Conclusion

Likelihood displacement can be catastrophic and cause 
unintentional unlignment

24 / 26



Conclusion

Theory & Experiments: Samples with high CHES scores 
lead to likelihood displacement 

Likelihood displacement can be catastrophic and cause 
unintentional unlignment

24 / 26



Conclusion

Theory & Experiments: Samples with high CHES scores 
lead to likelihood displacement 

Filtering out samples with high CHES score can mitigate 
unintentional unalignment

Likelihood displacement can be catastrophic and cause 
unintentional unlignment

24 / 26



Conclusion

Theory & Experiments: Samples with high CHES scores 
lead to likelihood displacement 

Filtering out samples with high CHES score can mitigate 
unintentional unalignment

Our work highlights the importance of curating data with sufficiently 
distinct preferences, for which the CHES score may prove valuable

Likelihood displacement can be catastrophic and cause 
unintentional unlignment
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