Implicit Regularization in Tensor Factorization

Noam Razin

Joint work with

Asaf Maman

Nadav Cohen

Tel Aviv University

Outline

1 Implicit Regularization in Deep Learning

2 Tensor Factorization

3 Implicit Tensor Rank Minimization

4 Tensor Rank as Measure of Complexity

5 Conclusion

Generalization via Bias-Variance Tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Generalization via Bias-Variance Tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

Generalization via Bias-Variance Tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

Limiting model size

Generalization via Bias-Variance Tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

- Limiting model size
- Adding regularization (e.g. ℓ_2 penalty)

Generalization in Deep Learning

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

of learned weights

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

Can be trained with little or no regularization

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

Can be trained with little or no regularization

 \implies Many solutions (predictors) fit training data

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

Can be trained with little or no regularization

 \implies Many solutions (predictors) fit training data

Variants of gradient descent (GD) usually find one of these solutions

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

Can be trained with little or no regularization

 \implies Many solutions (predictors) fit training data

Variants of gradient descent (GD) usually find one of these solutions

With "natural" data solution found often generalizes well

Conventional Wisdom: Implicit Regularization

Conventional Wisdom

Implicit regularization minimizes "complexity":

Conventional Wisdom: Implicit Regularization

Conventional Wisdom

Implicit regularization minimizes "complexity":

• GD fits training data with predictor of lowest possible complexity

Conventional Wisdom: Implicit Regularization

Conventional Wisdom

Implicit regularization minimizes "complexity":

• GD fits training data with predictor of lowest possible complexity

• Natural data can be fit with low complexity, other data cannot

Goal

Mathematically formalize implicit regularization in deep learning (DL)

Goal

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

Goal

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

• Quantitative (admit generalization bounds)

test error \leq train error + O(complexity / # train examples)

Goal

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

• Quantitative (admit generalization bounds)

test error \leq train error + O(complexity / # train examples)

• Capture essence of natural data (allow its fit with low complexity)

Iow complexity

X high complexity

Common Complexity Measures Are Insufficient

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

• Quantitative (admits generalization bounds)?

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

• Quantitative (admits generalization bounds)?

E.g. Bartlett & Mendelson 2002, Neyshabur et al. 2015, Bartlett et al. 2017, Neyshabur et al. 2018, Golowich et al. 2018

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

• Quantitative (admits generalization bounds)?

E.g. Bartlett & Mendelson 2002, Neyshabur et al. 2015, Bartlett et al. 2017, Neyshabur et al. 2018, Golowich et al. 2018

• Captures essence of natural data (allow its fit with low complexity)?

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

• Quantitative (admits generalization bounds)?

E.g. Bartlett & Mendelson 2002, Neyshabur et al. 2015, Bartlett et al. 2017, Neyshabur et al. 2018, Golowich et al. 2018

• Captures essence of natural data (allow its fit with low complexity)?

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

• Quantitative (admits generalization bounds)?

• Captures essence of natural data (allow its fit with low complexity)?

When fitting data the norm is not low/margin is not high enough

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

• Quantitative (admits generalization bounds)?

• Captures essence of natural data (allow its fit with low complexity)?

E.g. Dziugaite & Roy 2017, Neyshabur et al. 2017, Jiang et al. 2020

When fitting data the norm is not low/margin is not high enough

 \implies existing generalization bounds are typically uninformative

Matrix Completion \leftrightarrow Two-Dimensional Prediction

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF	
Bob	4	?	?	4 ~	observations $\left\{ y_{ij} ight\}_{(i,j) \in \Omega}$
Alice	?	5	4 👡	?	
Joe	?	5	?	?	

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

Matrix Completion \leftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

(1) Admits generalization bounds

(2) Natural data is often low rank

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

(1) Admits generalization bounds (2) Natural data is often low rank

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

- (1) Admits generalization bounds (2) Natural data is often low rank
- $d \times d'$ matrix completion \longleftrightarrow prediction from $\{1, ..., d\} \times \{1, ..., d'\}$ to \mathbb{R} value of entry $(i, j) \iff$ label of input (i, j)

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

- (1) Admits generalization bounds (2) Natural data is often low rank
- $d \times d'$ matrix completion \longleftrightarrow prediction from $\{1, ..., d\} \times \{1, ..., d'\}$ to \mathbb{R} value of entry $(i, j) \iff$ label of input (i, j)observed entries \longleftrightarrow train data

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

(1) Admits generalization bounds (2) Natural data is often low rank

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

value of entry $(i,j) \iff$ label of input (i,j)

observed entries \iff train data

unobserved entries \iff test data

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

Complexity measure: matrix rank

(1) Admits generalization bounds (2) Natural data is often low rank

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

value of entry $(i,j) \iff$ label of input (i,j)

observed entries \iff train data

unobserved entries \iff test data

matrix \longleftrightarrow predictor

Noam Razin (TAU)
Matrix Factorization \longleftrightarrow Linear Neural Network

Matrix Factorization \longleftrightarrow Linear Neural Network

Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$4 ? ? 4$$
? 5 4 ?? 5 ? ? W_L * • • • * W_2 * W_1 hidden dims donot necessarilyconstrain rank

Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$\frac{4}{7}, \frac{2}{5}, \frac{4}{7}, \frac$$

Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$\frac{4}{?}, \frac{?}{5}, \frac{4}{?}, \frac{?}{?} = W_L * \cdots * W_2 * W_1$$
 hidden dims do
not necessarily
constrain rank
$$\min_{W_1, \dots, W_L} \sum_{(i,j) \in \Omega} \ell([W_L W_{L-1} \cdots W_1]_{ij} - y_{ij})$$

$$\uparrow$$

Predetermined loss function (e.g. ℓ_2 , ℓ_1 , Huber)

Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

 $MF \longleftrightarrow matrix \text{ completion via linear NN (with no explicit regularization!)}$

Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

 $MF \leftrightarrow matrix \text{ completion via linear NN (with no explicit regularization!)}$

Empirical Phenomenon (Gunasekar et al. 2017) MF (with small init and step size) accurately recovers low rank matrices

Implicit Regularization in Matrix Factorization

Implicit Regularization (with small init and step size):

Implicit Regularization in Matrix Factorization

Implicit Regularization (with small init and step size):

Conjecture (Gunasekar et al. 2017)

GD over MF converges to min nuclear norm solution (predictor)

Implicit Regularization in Matrix Factorization

Implicit Regularization (with small init and step size):

Conjecture (Gunasekar et al. 2017)

GD over MF converges to min nuclear norm solution (predictor)

Dynamical Analyses

Established bias to low rank instead:

Implicit Regularization in Matrix Factorization

Implicit Regularization (with small init and step size):

Conjecture (Gunasekar et al. 2017)

GD over MF converges to min nuclear norm solution (predictor)

Dynamical Analyses

Established bias to low rank instead:

• Settings where all norms $\rightarrow \infty$ while rank is minimized (Razin & Cohen 2020)

Implicit Regularization in Matrix Factorization

Implicit Regularization (with small init and step size):

Conjecture (Gunasekar et al. 2017)

GD over MF converges to min nuclear norm solution (predictor)

Dynamical Analyses

Established bias to low rank instead:

- Settings where all norms $\rightarrow \infty$ while rank is minimized (Razin & Cohen 2020)
- Incremental rank learning (e.g. Arora et al. 2019, Li et al. 2021)

Implicit Regularization in Matrix Factorization

Implicit Regularization (with small init and step size):

Conjecture (Gunasekar et al. 2017)

GD over MF converges to min nuclear norm solution (predictor)

Dynamical Analyses

Established bias to low rank instead:

- Settings where all norms $\rightarrow \infty$ while rank is minimized (Razin & Cohen 2020)
- Incremental rank learning (e.g. Arora et al. 2019, Li et al. 2021)

$\begin{array}{rl} \mbox{Implicit regularization to low rank } + \mbox{ data is low rank} \\ \implies \mbox{ generalization} \end{array}$

Drawbacks of Studying Matrix Factorization (MF)

As a surrogate for deep learning, MF is inherently limited:

Drawbacks of Studying Matrix Factorization (MF)

As a surrogate for deep learning, MF is inherently limited:

(1) Misses crucial aspect of non-linearity

Drawbacks of Studying Matrix Factorization (MF)

As a surrogate for deep learning, MF is inherently limited:

- (1) Misses crucial aspect of non-linearity
- (2) Does not capture prediction with more than 2 input variables

Drawbacks of Studying Matrix Factorization (MF)

As a surrogate for deep learning, MF is inherently limited:

- (1) Misses crucial aspect of non-linearity
- (2) Does not capture prediction with more than 2 input variables

We study tensor factorization — accounts for both (1) and (2)

Outline

Implicit Regularization in Deep Learning

2 Tensor Factorization

3 Implicit Tensor Rank Minimization

4 Tensor Rank as Measure of Complexity

5 Conclusion

Tensor Completion \leftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N =order of tensor)

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Standard prediction tasks can be seen as tensor completion problems

Tensor Factorization \leftrightarrow Non-Linear Neural Network

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

Tensor Factorization \leftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N) \in \Omega} \ell\left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N\right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N}\right)$$

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N) \in \Omega} \ell\left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N\right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N}\right)$$

Tensor rank: min # of components (*R*) required to express a tensor
Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_{r}^{n}\}_{r,n}} \sum_{(i_{1},...,i_{N}) \in \Omega} \ell(\left[\sum_{r=1}^{R} \mathbf{w}_{r}^{1} \otimes \cdots \otimes \mathbf{w}_{r}^{N} \right]_{i_{1},...,i_{N}} - y_{i_{1},...,i_{N}})$$

$$\uparrow$$

$$R \text{ large enough to not constrain rank}$$

Tensor rank: min # of components (*R*) required to express a tensor

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_{r}^{n}\}_{r,n}} \sum_{(i_{1},...,i_{N}) \in \Omega} \ell(\left[\sum_{r=1}^{R} \mathbf{w}_{r}^{1} \otimes \cdots \otimes \mathbf{w}_{r}^{N} \right]_{i_{1},...,i_{N}} - y_{i_{1},...,i_{N}})$$

$$\uparrow$$

$$R \text{ large enough to not constrain rank}$$

Tensor rank: min # of components (*R*) required to express a tensor

 $\mathsf{TF}\longleftrightarrow\mathsf{tensor}$ completion via NN with multiplicative non-linearity

Tensor Factorization

Non-Linear Neural Network

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_{r}^{n}\}_{r,n}} \sum_{(i_{1},...,i_{N}) \in \Omega} \ell(\left[\sum_{r=1}^{R} \mathbf{w}_{r}^{1} \otimes \cdots \otimes \mathbf{w}_{r}^{N} \right]_{i_{1},...,i_{N}} - y_{i_{1},...,i_{N}})$$

$$\uparrow$$

$$R \text{ large enough to not constrain rank}$$

Tensor rank: min # of components (*R*) required to express a tensor

 $\mathsf{TF}\longleftrightarrow\mathsf{tensor}$ completion via NN with multiplicative non-linearity

 Tensor Factorization
 Non-Linear Neural Network

 Imput
 conv
 pool
 sum (output)

 Imput
 conv
 pool
 sum (output)

 Imput
 conv
 pool
 pool

 Imput
 conv
 pool
 pool

 Imput
 conv
 pool
 pool

Equivalence extensively studied (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)

Tensor Factorization

Implicit Regularization in Tensor Factorization

Question

Question

To which solutions does $\mathcal{W}_e := \sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N$ converge? \uparrow **"end tensor"**

Question

To which solutions does
$$\mathcal{W}_e := \sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N$$
 converge?
 \uparrow
"end tensor"

Empirical Phenomenon (Razin & Cohen 2020)

TF (with small init and step size) accurately recovers low rank tensors

Question

To which solutions does
$$\mathcal{W}_e := \sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N$$
 converge?
 \uparrow
"end tensor"

Empirical Phenomenon (Razin & Cohen 2020)

TF (with small init and step size) accurately recovers low rank tensors

Current Talk

Theoretically support empirical phenomenon

Question

To which solutions does
$$\mathcal{W}_e := \sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N$$
 converge?
 \uparrow
"end tensor"

Empirical Phenomenon (Razin & Cohen 2020)

TF (with small init and step size) accurately recovers low rank tensors

Current Talk

Theoretically support empirical phenomenon

Dynamical analysis reveals that with small init and step size:

Question

To which solutions does
$$\mathcal{W}_e := \sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N$$
 converge?
 \uparrow
"end tensor"

Empirical Phenomenon (Razin & Cohen 2020)

TF (with small init and step size) accurately recovers low rank tensors

Current Talk

Theoretically support empirical phenomenon

Dynamical analysis reveals that with small init and step size:

 \bullet Incremental tensor rank learning \Longrightarrow bias towards low tensor rank

Question

To which solutions does
$$\mathcal{W}_e := \sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N$$
 converge?
 \uparrow
"end tensor"

Empirical Phenomenon (Razin & Cohen 2020)

TF (with small init and step size) accurately recovers low rank tensors

Current Talk

Theoretically support empirical phenomenon

Dynamical analysis reveals that with small init and step size:

- \bullet Incremental tensor rank learning \Longrightarrow bias towards low tensor rank
- Tensor rank minimization (under technical conditions)

Outline

Implicit Regularization in Deep Learning

2 Tensor Factorization

3 Implicit Tensor Rank Minimization

Tensor Rank as Measure of Complexity

5 Conclusion

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} heta(t) = -
abla f(heta(t)) \ , \ t \geq 0$$

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} heta(t) = -
abla f(heta(t)) \ , \ t \geq 0$$

Admits use of theoretical tools from differential geometry/equations

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} heta(t) = -
abla f(heta(t)) \ , \ t \geq 0$$

Admits use of theoretical tools from differential geometry/equations

Closely matches GD in practice for tensor factorization

Dynamical Analysis of Implicit Regularization

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

Dynamical Analysis of Implicit Regularization

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Interpretation

• Order $N \ge 3 \implies$ the exponent $2 - \frac{2}{N} > 1$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

- Order $N \ge 3 \implies$ the exponent $2 \frac{2}{N} > 1$
- Components move slower when small and faster when large

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

- Order $N \ge 3 \implies$ the exponent $2 \frac{2}{N} > 1$
- Components move slower when small and faster when large
- Small init

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

- Order $N \ge 3 \implies$ the exponent $2 \frac{2}{N} > 1$
- Components move slower when small and faster when large
- $\bullet \ {\sf Small \ init} \ \Longrightarrow \ {\sf Incremental \ growth \ of \ components}$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

- Order $N \ge 3 \implies$ the exponent $2 \frac{2}{N} > 1$
- Components move slower when small and faster when large
- $\bullet\,$ Small init $\,\Longrightarrow\,$ Incremental growth of components $\Longrightarrow\,$ low tensor rank

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Interpretation

- Order $N \ge 3 \implies$ the exponent $2 \frac{2}{N} > 1$
- Components move slower when small and faster when large
- $\bullet\,$ Small init $\,\Longrightarrow\,$ Incremental growth of components $\Longrightarrow\,$ low tensor rank

Generalizes existing characterization for matrix factorization

Component Norm Dynamics Theorem — Proof Sketch

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any
$$n, ar{n}$$
: $\left|\|oldsymbol{w}_r^n(t)\|^2 - \left\|oldsymbol{w}_r^{ar{n}}(t)
ight\|^2
ight|$ is constant through time

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any $n, \bar{n}: \left\| \| \mathbf{w}_{r}^{n}(t) \|^{2} - \left\| \mathbf{w}_{r}^{\bar{n}}(t) \right\|^{2} \right\|$ is constant through time

 \implies when init is small $\|\mathbf{w}_r^n(t)\|^2 \approx \|\mathbf{w}_r^{\bar{n}}(t)\|^2 \approx \|\otimes_{n'=1}^N \mathbf{w}_r^{n'}(t)\|^{\frac{2}{N}}$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any $n, \bar{n}: \left| \| \mathbf{w}_r^n(t) \|^2 - \| \mathbf{w}_r^{\bar{n}}(t) \|^2 \right|$ is constant through time

 $\implies \text{ when init is small } \|\mathbf{w}_r^n(t)\|^2 \approx \|\mathbf{w}_r^{\bar{n}}(t)\|^2 \approx \|\otimes_{n'=1}^N \mathbf{w}_r^{n'}(t)\|^{\frac{2}{N}}$ Denote:

 $\mathcal{W}_e := \sum_{r=1}^R \otimes_{n=1}^N \mathbf{w}_r^n$ — end tensor

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any n, \bar{n} : $\left| \| \mathbf{w}_{r}^{n}(t) \|^{2} - \| \mathbf{w}_{r}^{\bar{n}}(t) \|^{2} \right|$ is constant through time \implies when init is small $\| \mathbf{w}_{r}^{n}(t) \|^{2} \approx \| \mathbf{w}_{r}^{\bar{n}}(t) \|^{2} \approx \| \otimes_{n'=1}^{N} \mathbf{w}_{r}^{n'}(t) \|^{\frac{2}{N}}$ Denote:

$$\mathcal{W}_e:=\sum_{r=1}^R\otimes_{n=1}^N m{w}_r^n$$
 — end tensor , $\mathcal{L}(\cdot):=$ loss w.r.t. \mathcal{W}_e

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any $n, \bar{n}: \left| \| \mathbf{w}_r^n(t) \|^2 - \| \mathbf{w}_r^{\bar{n}}(t) \|^2 \right|$ is constant through time

 $\implies \text{ when init is small } \|\mathbf{w}_r^n(t)\|^2 \approx \|\mathbf{w}_r^{\bar{n}}(t)\|^2 \approx \|\otimes_{n'=1}^N \mathbf{w}_r^{n'}(t)\|^{\frac{2}{N}}$ Denote:

$$\mathcal{W}_e := \sum_{r=1}^R \otimes_{n=1}^N \mathbf{w}_r^n$$
 — end tensor , $\mathcal{L}(\cdot) := \mathsf{loss} \; \mathsf{w.r.t.} \; \mathcal{W}_e$, $\widehat{\mathbf{w}}_r^n := rac{\mathbf{w}_r^n}{\|\mathbf{w}_r^n\|}$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any
$$n,ar{n}:\ \left|\|oldsymbol{w}_r^n(t)\|^2-ig\|oldsymbol{w}_r^{ar{n}}(t)ig\|^2
ight|$$
 is constant through time

 $\implies \text{ when init is small } \|\mathbf{w}_r^n(t)\|^2 \approx \|\mathbf{w}_r^{\bar{n}}(t)\|^2 \approx \|\otimes_{n'=1}^N \mathbf{w}_r^{n'}(t)\|^{\frac{2}{N}}$ Denote:

$$\mathcal{W}_e := \sum_{r=1}^R \otimes_{n=1}^N \mathbf{w}_r^n$$
 — end tensor , $\mathcal{L}(\cdot) := \mathsf{loss} \; \mathsf{w.r.t.} \; \mathcal{W}_e$, $\widehat{\mathbf{w}}_r^n := rac{\mathbf{w}_r^n}{\|\mathbf{w}_r^n\|}$

Differentiating w.r.t. time:

$$\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| = \ldots = \sum_{n=1}^{N} \prod_{n' \neq n} \| \mathbf{w}_{r}^{n'}(t) \|^{2} \cdot \langle -\nabla \mathcal{L}(\mathcal{W}_{e}(t)), \otimes_{n=1}^{N} \widehat{\mathbf{w}}_{r}^{n}(t) \rangle$$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any $n, \bar{n}: \left| \| \mathbf{w}_r^n(t) \|^2 - \| \mathbf{w}_r^{\bar{n}}(t) \|^2 \right|$ is constant through time

 $\implies \text{ when init is small } \|\mathbf{w}_r^n(t)\|^2 \approx \|\mathbf{w}_r^{\bar{n}}(t)\|^2 \approx \|\otimes_{n'=1}^N \mathbf{w}_r^{n'}(t)\|^{\frac{2}{N}}$ Denote:

 $\mathcal{W}_e := \sum_{r=1}^R \otimes_{n=1}^N \mathbf{w}_r^n$ — end tensor , $\mathcal{L}(\cdot) := \text{loss w.r.t. } \mathcal{W}_e$, $\widehat{\mathbf{w}}_r^n := \frac{\mathbf{w}_r^n}{\|\mathbf{w}_r^n\|}$

Differentiating w.r.t. time:

$$\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| = \ldots = \sum_{n=1}^{N} \prod_{n' \neq n} \| \mathbf{w}_{r}^{n'}(t) \|^{2} \cdot \langle -\nabla \mathcal{L}(\mathcal{W}_{e}(t)), \otimes_{n=1}^{N} \widehat{\mathbf{w}}_{r}^{n}(t) \rangle$$

Theorem

When initialized near-zero, the norm of the r'th component evolves by:

$$\frac{d}{dt}\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|\propto\left\|\otimes_{n=1}^{\mathsf{N}}\mathbf{w}_{r}^{n}(t)\right\|^{2-\frac{2}{\mathsf{N}}}$$

Proof Sketch

For any $n, \bar{n}: \left| \| \mathbf{w}_r^n(t) \|^2 - \| \mathbf{w}_r^{\bar{n}}(t) \|^2 \right|$ is constant through time

 $\implies \text{ when init is small } \|\mathbf{w}_r^n(t)\|^2 \approx \|\mathbf{w}_r^{\bar{n}}(t)\|^2 \approx \|\otimes_{n'=1}^N \mathbf{w}_r^{n'}(t)\|^{\frac{2}{N}}$ Denote:

 $\mathcal{W}_e := \sum_{r=1}^R \otimes_{n=1}^N \mathbf{w}_r^n - \text{ end tensor }, \ \mathcal{L}(\cdot) := \text{loss w.r.t. } \mathcal{W}_e \ , \ \widehat{\mathbf{w}}_r^n := \frac{\mathbf{w}_r^n}{\|\mathbf{w}_r^n\|}$

Differentiating w.r.t. time:

$$\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \approx \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}} \cdot N \langle -\nabla \mathcal{L}(\mathcal{W}_{e}(t)), \otimes_{n=1}^{N} \widehat{\mathbf{w}}_{r}^{n}(t) \rangle$$

Dynamical Analysis — Experiments

Dynamical Analysis — Experiments

Rank 5 Order 4 Tensor Completion

Fit observations via GD over 1000-component tensor factorization

Dynamical Analysis — Experiments

Rank 5 Order 4 Tensor Completion

Fit observations via GD over 1000-component tensor factorization

Dynamical Analysis — Experiments

Rank 5 Order 4 Tensor Completion

Fit observations via GD over 1000-component tensor factorization

As init $\rightarrow 0$ fewer components depart from zero

Dynamical Analysis — Experiments

Rank 5 Order 4 Tensor Completion

Fit observations via GD over 1000-component tensor factorization

As init \rightarrow 0 fewer components depart from zero

Incremental learning of components leads to low tensor rank!
Implicit Tensor Rank Minimization: Rank One Trajectory

Implicit Tensor Rank Minimization: Rank One Trajectory

Assume Huber loss with no observation exactly 0

Implicit Tensor Rank Minimization: Rank One Trajectory

Assume Huber loss with no observation exactly 0

and that there exists component at init with:

(1) positive projection onto $-\nabla \mathcal{L}(0)$ and (2) norm > others

Implicit Tensor Rank Minimization: Rank One Trajectory

Assume Huber loss with no observation exactly 0

and that there exists component at init with:

(1) positive projection onto $-\nabla \mathcal{L}(0)$ and (2) norm > others

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Implicit Tensor Rank Minimization: Rank One Trajectory

Assume Huber loss with no observation exactly 0

and that there exists component at init with:

(1) positive projection onto $-\nabla \mathcal{L}(0)$ and (2) norm > others

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Corollary

If rank 1 trajectories converge to \mathcal{W}^* , then $\mathcal{W}_e(t) o \mathcal{W}^*$ as init o 0

Noam Razin (TAU)

Rank One Trajectory Theorem — Proof Sketch

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Rank One Trajectory Theorem — Proof Sketch

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

 $\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \propto \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}}$ and $\nabla \mathcal{L}(\mathcal{W}_{e})$ is const around origin

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

 $\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \propto \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}}$ and $\nabla \mathcal{L}(\mathcal{W}_{e})$ is const around origin

 \implies exists time at which one component is $\Omega(1)$ while others are $\mathcal{O}(\alpha^N)$

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

 $\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \propto \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}}$ and $\nabla \mathcal{L}(\mathcal{W}_{e})$ is const around origin

 \implies exists time at which one component is $\Omega(1)$ while others are $\mathcal{O}(\alpha^N)$

Taking $\alpha \rightarrow 0$

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

 $\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \propto \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}}$ and $\nabla \mathcal{L}(\mathcal{W}_{e})$ is const around origin

 \implies exists time at which one component is $\Omega(1)$ while others are $\mathcal{O}(\alpha^N)$

Taking $\alpha \rightarrow 0$

 \implies at that time $\mathcal{W}_e(t)$ is arbitrarily close to a rank 1 trajectory

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

 $\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \propto \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}}$ and $\nabla \mathcal{L}(\mathcal{W}_{e})$ is const around origin

 \implies exists time at which one component is $\Omega(1)$ while others are $\mathcal{O}(\alpha^N)$

Taking $\alpha \rightarrow 0$

 \implies at that time $\mathcal{W}_e(t)$ is arbitrarily close to a rank 1 trajectory

Loss is locally smooth

Theorem

For any time T, distance D, and ϵ , if init is sufficiently small, $W_e(t)$ is ϵ close to a rank 1 trajectory until $t \ge T$ or $||W_e(t)|| \ge D$

Proof Sketch

Denote init scale $\alpha > 0$

 $\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \| \propto \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|^{2-\frac{2}{N}}$ and $\nabla \mathcal{L}(\mathcal{W}_{e})$ is const around origin

 \implies exists time at which one component is $\Omega(1)$ while others are $\mathcal{O}(\alpha^N)$

Taking $\alpha \rightarrow 0$

 \implies at that time $\mathcal{W}_e(t)$ is arbitrarily close to a rank 1 trajectory

Loss is locally smooth

 $\implies \mathcal{W}_e(t)$ is ϵ close to rank 1 trajectory until $t \geq T$ or $\|\mathcal{W}_e(t)\| \geq D$

Outline

- Implicit Regularization in Deep Learning
- 2 Tensor Factorization
- 3 Implicit Tensor Rank Minimization
- 4 Tensor Rank as Measure of Complexity

5 Conclusion

Challenge: Formalizing Notion of Complexity

Goal

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

• Quantitative (admit generalization bounds)

test error \leq train error + O(complexity / # train examples)

• Capture essence of natural data (allow its fit with low complexity)

low complexity

× high complexity

We saw:

We saw:

• Tensor completion \longleftrightarrow multi-dimensional prediction

We saw:

• Tensor completion \longleftrightarrow multi-dimensional prediction

• Tensor factorization \longleftrightarrow non-linear NN

We saw:

• Tensor completion \longleftrightarrow multi-dimensional prediction

• Tensor factorization \longleftrightarrow non-linear NN

• Implicit regularization favors tensors (predictors) of low tensor rank

We saw:

• Tensor completion \longleftrightarrow multi-dimensional prediction

• Tensor factorization \longleftrightarrow non-linear NN

• Implicit regularization favors tensors (predictors) of low tensor rank

Question

Can tensor rank serve as measure of complexity for predictors?

Noam Razin (TAU)

Tensor Rank as Measure of Complexity

Experiment: Fitting Data with Low Tensor Rank

Experiment

Fitting standard datasets with predictors of low tensor rank

Experiment

Fitting standard datasets with predictors of low tensor rank

Datasets:

Experiment

Fitting standard datasets with predictors of low tensor rank

Datasets:

- MNIST 🏂 🙋 🖌 and Fashion-MNIST 🌆 👕 📗 (one-vs-all)
- Each compared against:

(i) random images (same labels) (ii) random labels (same images)

Experiment

Fitting standard datasets with predictors of low tensor rank

Datasets:

- MNIST 🏂 🙋 🍟 and Fashion-MNIST 🍠 👕 📋 (one-vs-all)
 - Each compared against:

(i) random images (same labels) (ii) random labels (same images)

Experiment

Fitting standard datasets with predictors of low tensor rank

Datasets:

- MNIST 🏂 🙋 🛃 and Fashion-MNIST 🛃 🕋 📗 (one-vs-all)
 - Each compared against:

(i) random images (same labels) (ii) random labels (same images)

Original data fit far more accurately than random (leading to low test err)!

Experiment

Fitting standard datasets with predictors of low tensor rank

Datasets:

- MNIST 🏂 🙋 🚽 and Fashion-MNIST 🛃 👕 📗 (one-vs-all)
 - Each compared against:

(i) random images (same labels) (ii) random labels (same images)

Original data fit far more accurately than random (leading to low test err)!

Tensor rank may shed light on both implicit regularization of NNs and properties of real-world data translating it to generalization

Noam Razin (TAU)

Outline

- Implicit Regularization in Deep Learning
- 2 Tensor Factorization
- 3 Implicit Tensor Rank Minimization
- 4 Tensor Rank as Measure of Complexity

Goal: Understanding implicit regularization in DL

Goal: Understanding implicit regularization in DL

• Challenge: lack measures of complexity that capture natural data

Goal: Understanding implicit regularization in DL

• Challenge: lack measures of complexity that capture natural data

Tensor Factorization

Goal: Understanding implicit regularization in DL

• <u>Challenge</u>: lack measures of complexity that capture natural data

Tensor Factorization

• Equivalent to multi-dim prediction via non-linear NN

Goal: Understanding implicit regularization in DL

• Challenge: lack measures of complexity that capture natural data

Tensor Factorization

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Goal: Understanding implicit regularization in DL

• Challenge: lack measures of complexity that capture natural data

Tensor Factorization

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Tensor Rank as Measure of Complexity

Goal: Understanding implicit regularization in DL

• <u>Challenge</u>: lack measures of complexity that capture natural data

Tensor Factorization

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Tensor Rank as Measure of Complexity

Standard datasets are fitted by predictors of low tensor rank
Recap

Goal: Understanding implicit regularization in DL

• <u>Challenge</u>: lack measures of complexity that capture natural data

Tensor Factorization

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Tensor Rank as Measure of Complexity

Standard datasets are fitted by predictors of low tensor rank

Hypothesis

Tensor rank may pave way to understanding:

Recap

Goal: Understanding implicit regularization in DL

• <u>Challenge</u>: lack measures of complexity that capture natural data

Tensor Factorization

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Tensor Rank as Measure of Complexity

Standard datasets are fitted by predictors of low tensor rank

Hypothesis

Tensor rank may pave way to understanding:

• Implicit regularization of neural networks

Recap

Goal: Understanding implicit regularization in DL

• <u>Challenge</u>: lack measures of complexity that capture natural data

Tensor Factorization

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Tensor Rank as Measure of Complexity

Standard datasets are fitted by predictors of low tensor rank

Hypothesis

Tensor rank may pave way to understanding:

- Implicit regularization of neural networks
- Properties of data translating it to generalization

Ongoing Work: Adding Depth via Hierarchy

Ongoing Work: Adding Depth via Hierarchy

Tensor Factorization

Shallow Non-Linear Neural Network

Ongoing Work: Adding Depth via Hierarchy

Tensor Factorization

Shallow Non-Linear Neural Network

Implicit regularization = minimization of tensor rank

Ongoing Work: Adding Depth via Hierarchy

Tensor Factorization

Shallow Non-Linear Neural Network

Ongoing Work: Adding Depth via Hierarchy

Tensor Factorization

Shallow Non-Linear Neural Network

Hierarchical Tensor Factorization

Deep Non-Linear Neural Network

Ongoing Work: Adding Depth via Hierarchy

Shallow Non-Linear Neural Network

Hierarchical Tensor Factorization

Deep Non-Linear Neural Network

Ongoing Work: Adding Depth via Hierarchy

Shallow Non-Linear Neural Network

Hierarchical Tensor Factorization

Deep Non-Linear Neural Network

Thank You

Work supported by: Amnon and Anat Shashua, Len Blavatnik and the Blavatnik Family Foundation, Yandex Initiative in Machine Learning, Google Research Gift

Noam Razin (TAU)