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Implicit Regularization in Deep Learning

Generalization via Bias-Variance Tradeoff
Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

Limiting model size

Adding regularization (e.g. `2 penalty)
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Implicit Regularization in Deep Learning

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

≫ # of  
training examples 

# of  
learned weights 

Can be trained with little or no regularization

=⇒ Many solutions (predictors) fit training data

Variants of gradient descent (GD) usually find one of these solutions

With “natural” data solution found often generalizes well
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Implicit Regularization in Deep Learning

Conventional Wisdom: Implicit Regularization
Conventional Wisdom
Implicit regularization minimizes “complexity”:

GD fits training data with predictor of lowest possible complexity

GD

Natural data can be fit with low complexity, other data cannot

natural random
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Implicit Regularization in Deep Learning

Challenge: Formalizing Notion of Complexity
Goal
Mathematically formalize implicit regularization in deep learning (DL)

Challenge
We lack definitions for predictor complexity that are:

Quantitative (admit generalization bounds)

test error ≤ train error + O
(
complexity

/
# train examples

)
Capture essence of natural data (allow its fit with low complexity)

low complexity high complexity
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Implicit Regularization in Deep Learning

Common Complexity Measures Are Insufficient

Commonly studied complexity measure: norm/margin

Quantitative (admits generalization bounds)?

E.g. Bartlett & Mendelson 2002, Neyshabur et al. 2015, Bartlett et al. 2017,
Neyshabur et al. 2018, Golowich et al. 2018

Captures essence of natural data (allow its fit with low complexity)?

E.g. Dziugaite & Roy 2017, Neyshabur et al. 2017, Jiang et al. 2020

When fitting data the norm is not low/margin is not high enough
=⇒ existing generalization bounds are typically uninformative
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Implicit Regularization in Deep Learning

Matrix Completion ←→ Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

observations 𝑦!" !," ∈%

Complexity measure: matrix rank
(1) Admits generalization bounds (2) Natural data is often low rank

d × d ′ matrix completion ←→ prediction from {1, ..., d} × {1, ..., d ′} to R

value of entry (i , j) ←→ label of input (i , j)

observed entries ←→ train data

unobserved entries ←→ test data

matrix ←→ predictor
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Implicit Regularization in Deep Learning

Matrix Factorization ←→ Linear Neural Network

Matrix factorization (MF):
Parameterize solution as product of matrices and fit observations via GD

minW1,...,WL

∑
(i , j)∈Ω

`
(
[WLWL−1 · · ·W1]ij − yij

)
↑

Predetermined loss function (e.g. `2, `1, Huber)

MF ←→ matrix completion via linear NN (with no explicit regularization!)

Empirical Phenomenon (Gunasekar et al. 2017)
MF (with small init and step size) accurately recovers low rank matrices
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Implicit Regularization in Deep Learning

Implicit Regularization in Matrix Factorization
Implicit Regularization (with small init and step size):

Conjecture (Gunasekar et al. 2017)
GD over MF converges to min nuclear norm solution (predictor)

Dynamical Analyses
Established bias to low rank instead:

Settings where all norms →∞ while rank is minimized (Razin & Cohen 2020)

Incremental rank learning (e.g. Arora et al. 2019, Li et al. 2021)

Implicit regularization to low rank + data is low rank
=⇒ generalization

Noam Razin (TAU) Implicit Regularization in TF 10 / 31
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Settings where all norms →∞ while rank is minimized (Razin & Cohen 2020)

Incremental rank learning (e.g. Arora et al. 2019, Li et al. 2021)

Implicit regularization to low rank + data is low rank
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Implicit Regularization in Deep Learning

Drawbacks of Studying Matrix Factorization (MF)

As a surrogate for deep learning, MF is inherently limited:

(1) Misses crucial aspect of non-linearity

(2) Does not capture prediction with more than 2 input variables

We study tensor factorization — accounts for both (1) and (2)
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Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor
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Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction (2)

Standard prediction tasks can be seen as tensor completion problems

Illustration — Image Classification (3 Pixels)
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Tensor Factorization

Tensor Factorization ←→ Non-Linear Neural Network

Tensor factorization (TF):
Parameterize solution as sum of outer products and fit observations via GD

min{wn
r }r,n

∑
(i1,...,iN )∈Ω

`
([∑R

r=1w1
r ⊗ · · · ⊗wN

r
]
i1,...,iN

− yi1,...,iN
)

Tensor rank: min # of components (R) required to express a tensor

TF ←→ tensor completion via NN with multiplicative non-linearity

input conv pool sum 
(output) 

product pooling linear activation 

Tensor Factorization 

+  +  +
  

⊗ ⊗ ⊗ 

Non-Linear Neural Network 
 

Equivalence extensively studied (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)
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Tensor Factorization

Implicit Regularization in Tensor Factorization
Question

To which solutions does We :=
∑R

r=1 w1
r ⊗ · · · ⊗wN

r converge?
↑

“end tensor”

Empirical Phenomenon (Razin & Cohen 2020)
TF (with small init and step size) accurately recovers low rank tensors

Current Talk
Theoretically support empirical phenomenon

Dynamical analysis reveals that with small init and step size:

Incremental tensor rank learning =⇒ bias towards low tensor rank

Tensor rank minimization (under technical conditions)

Noam Razin (TAU) Implicit Regularization in TF 16 / 31
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Implicit Tensor Rank Minimization

Outline

1 Implicit Regularization in Deep Learning

2 Tensor Factorization

3 Implicit Tensor Rank Minimization

4 Tensor Rank as Measure of Complexity

5 Conclusion
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Implicit Tensor Rank Minimization

Gradient Flow
Gradient flow (GF) is a continuous version of GD (step size → 0):

d
dt θ(t) = −∇f (θ(t)) , t ≥ 0

Gradient descent

Gradient flow

Admits use of theoretical tools from differential geometry/equations

Closely matches GD in practice for tensor factorization
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Implicit Tensor Rank Minimization

Dynamical Analysis of Implicit Regularization
Theorem
When initialized near-zero, the norm of the r ’th component evolves by:

d
dt

∥∥∥⊗N
n=1wn

r (t)
∥∥∥ ∝ ∥∥∥⊗N

n=1wn
r (t)

∥∥∥2− 2
N

Interpretation
Order N ≥ 3 =⇒ the exponent 2− 2

N > 1

Components move slower when small and faster when large

Small init =⇒ Incremental growth of components =⇒ low tensor rank

Generalizes existing characterization for matrix factorization
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Implicit Tensor Rank Minimization

Component Norm Dynamics Theorem — Proof Sketch
Theorem
When initialized near-zero, the norm of the r ’th component evolves by:

d
dt

∥∥∥⊗N
n=1wn

r (t)
∥∥∥ ∝ ∥∥∥⊗N

n=1wn
r (t)

∥∥∥2− 2
N

Proof Sketch

For any n, n̄:
∣∣∣‖wn

r (t)‖2 −
∥∥wn̄

r (t)
∥∥2
∣∣∣ is constant through time
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=⇒ when init is small ‖wn
r (t)‖2 ≈ ‖wn̄

r (t)‖2 ≈ ‖⊗N
n′=1 wn′

r (t)‖ 2
N

Denote:

We :=
∑R

r=1⊗N
n=1wn

r — end tensor , L(·) := loss w.r.t.We , ŵn
r := wn

r
‖wn

r ‖

Differentiating w.r.t. time:
d
dt ‖⊗

N
n=1 wn

r (t)‖ = . . . =
N∑

n=1

∏
n′ 6=n
‖wn′

r (t)‖2 · 〈−∇L(We(t)),⊗N
n=1ŵn

r (t)〉
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Implicit Tensor Rank Minimization

Dynamical Analysis — Experiments

Rank 5 Order 4 Tensor Completion
Fit observations via GD over 1000-component tensor factorization

As init → 0 fewer components depart from zero

Incremental learning of components leads to low tensor rank!
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Implicit Tensor Rank Minimization

Implicit Tensor Rank Minimization: Rank One Trajectory

Assume Huber loss with no observation exactly 0

and that there exists component at init with:
(1) positive projection onto −∇L(0) and (2) norm > others

Theorem
For any time T , distance D, and ε, if init is sufficiently small, We(t) is ε
close to a rank 1 trajectory until t ≥ T or ‖We(t)‖ ≥ D

Corollary
If rank 1 trajectories converge to W∗, then We(t)→W∗ as init → 0
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Implicit Tensor Rank Minimization

Rank One Trajectory Theorem — Proof Sketch

Theorem
For any time T , distance D, and ε, if init is sufficiently small, We(t) is ε
close to a rank 1 trajectory until t ≥ T or ‖We(t)‖ ≥ D

Proof Sketch

Denote init scale α > 0
d
dt ‖ ⊗

N
n=1 wn

r (t)‖ ∝ ‖ ⊗N
n=1 wn

r (t)‖2− 2
N and ∇L(We) is const around origin

=⇒ exists time at which one component is Ω(1) while others are O(αN)

Taking α→ 0

=⇒ at that time We(t) is arbitrarily close to a rank 1 trajectory

Loss is locally smooth

=⇒ We(t) is ε close to rank 1 trajectory until t ≥ T or ‖We(t)‖ ≥ D
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Tensor Rank as Measure of Complexity
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Tensor Rank as Measure of Complexity

Challenge: Formalizing Notion of Complexity
Goal
Mathematically formalize implicit regularization in deep learning (DL)

Challenge
We lack definitions for predictor complexity that are:

Quantitative (admit generalization bounds)

test error ≤ train error + O
(
complexity

/
# train examples

)
Capture essence of natural data (allow its fit with low complexity)

low complexity high complexity
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Tensor Rank as Measure of Complexity

Tensor Rank Captures Non-Linear Neural Network
We saw:

Tensor completion ←→ multi-dimensional prediction

C 

1 
? 1 

0 

A B C 

A 

B 

Tensor factorization ←→ non-linear NN

+  +  +
  

⊗ ⊗ ⊗ 

Implicit regularization favors tensors (predictors) of low tensor rank

Question
Can tensor rank serve as measure of complexity for predictors?
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Each compared against:
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Original data fit far more accurately than random (leading to low test err)!
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Goal: Understanding implicit regularization in DL
Challenge: lack measures of complexity that capture natural data

Tensor Factorization
Equivalent to multi-dim prediction via non-linear NN
Dynamical analysis: implicit regularization minimizes tensor rank

Tensor Rank as Measure of Complexity
Standard datasets are fitted by predictors of low tensor rank
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Tensor rank may pave way to understanding:
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Deep Non-Linear Neural Network

input conv pool output

product poolinglinear activation

conv pool

Implicit regularization = minimization of tensor rank 

Oblivious to input ordering

Implicit regularization = minimization of hierarchical tensor rank

Accounts for input ordering
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Conclusion

Thank You
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