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Implicit Regularization in Deep Learning

Generalization via Bias-Variance Tradeoff
In classical learning theory generalization exhibits the bias-variance tradeoff

Tradeoff can be controlled through regularization:

1 Limiting model size

2 Adding term to loss (typically a norm)
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Implicit Regularization in Deep Learning

Generalization in Deep Learning (DL)
DNNs In Practice
Generalize without explicit regularization:

1 # of learned weights � # of training examples

2 Loss unchanged (e.g. no weight decay/dropout)
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Implicit Regularization in Deep Learning

Optimization Induces an Implicit Regularization
Multiple global minima: some generalize well, others don’t

Solution found by Gradient Descent (GD) often generalizes well

Conventional Wisdom
Gradient-based optimization induces an implicit regularization

Question
Can we mathematically understand this effect in concrete settings?
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Implicit Regularization in Deep Learning

Warm Up: Linear Models
Linear Regression

When # parameters > # training examples:

GD initialized at 0 converges to min `2 norm solution

argmin
w
‖w‖2 s.t. Xw = y
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Implicit Regularization in Deep Learning

Does Implicit Norm Minimization Transfer to DL?
Widespread Hope
GD in DL finds solutions with minimal norm (or quasi-norm)

argmin
w
‖w‖ s.t. w is global min

Demonstrated in various settings, e.g.:
Neyshabur et al. 2015
Gunasekar et al. 2017
Soudry et al. 2018
Gunasekar et al. 2018a
Gunasekar et al. 2018b
Li et al. 2018
Jacot et al. 2018
Mei et al. 2019
Ji & Telgarsky 2019a

Ji & Telgarsky 2019b
Wu et al. 2019
Oymak & Soltanolkotabi 2019
Nacson et al. 2019a
Nacson et al. 2019b
Woodworth et al. 2020
Lyu & Li 2020
Ali et al. 2020
Chizat & Bach 2020
Belabbas 2020
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Case Study: Matrix Factorization

Setting: Matrix Completion
Matrix completion: recover low-rank matrix given subset of entries

observed entries ←→ training data
unobserved entries ←→ test data

Denote observations by {bij}(i , j)∈Ω

Convex Programming Approach
Find minimal nuclear norm solution:

min ‖W ‖nuclear s.t. Wij = bij ∀(i , j) ∈ Ω

Perfectly recovers if observations are sufficiently many (Candes & Recht 2008)
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Case Study: Matrix Factorization

Matrix Factorization ←→ Linear Neural Network (LNN)
Deep Learning Approach

Parameterize solution as LNN and fit observations using GD (over `2 loss)

GD is run w.r.t. W1, . . . ,WL over:

`(WL:1) = 1
2
∑

(i , j)∈Ω

(
(WL:1)ij − bij

)2
To which solutions does product matrix WL:1 converge?

Empirical phenomenon: low-rank matrix often recovered accurately
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Case Study: Matrix Factorization

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)
With small learning rate and init close to the origin, GD over depth 2
matrix factorization converges to min nuclear norm solution.

GD implicitly solves convex programming approach?

Gunasekar et al. supported conjecture with:
Experiments

Proof for certain restricted case

Conjecture established under other restricted conditions:
Li et al. 2018
Belabbas 2020
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Case Study: Matrix Factorization

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)
For any norm ‖·‖, exist observations for which small learning rate and init
can not ensure GD converges to min ‖·‖ solution.

Arora et al. supported conjecture with:
Experiments: nuclear norm not always minimized, bias to low rank

Dynamical analysis of singular values: GD promotes sparse spectrum
↑

suggests tendency to low rank

Open Question
Does the implicit regularization in matrix factorization minimize a norm?
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Case Study: Matrix Factorization

Our Work: Resolving Open Question (Negatively)

Theorem (informal)
There exist matrix factorization settings where:

1 All norms (and quasi-norms) are driven towards ∞
2 Rank is essentially minimized

Affirms conjecture of Arora et al. 2019

Result stronger than conjecture:
Settings jointly disqualify all norms

Norms driven towards∞
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Implicit Regularization Can Drive All Norms to Infinity

Optimization Scheme
Common surrogate for GD with small learning rate and init:1

Gradient flow (GF) is a continuous version of GD (step size → 0):
d
dtw(t) = −∇f (w(t)) , t ∈ R≥0

Gradient descent

Gradient flow

Weights W1 . . .WL are balanced at init: W>
j+1Wj+1 = WjW>

j ,∀j .
↑

Holds approximately under ≈ 0 init, exactly under residual (Id) init

Closely matches GD in practice for linear neural networks

1(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)
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Implicit Regularization Can Drive All Norms to Infinity

A Simple Matrix Completion Problem
Consider the following 2-by-2 matrix completion problem:(

∗ 1
1 0

)

Min Frobenius norm ⇐⇒ ∗ = 0 (depth L = 1 solution)

Min nuclear norm ⇐⇒ ∗ = 0

Generally: Schatten-p (quasi-)norm :=
(∑

i σ
p
i
)1/p (σi - singular values)

Proposition
Schatten-p (quasi-)norms are minimized ⇐⇒ ∗ = 0

Arbitrary norms (or quasi-norms):
Proposition
For minimal ‖·‖ solutions, ∗ is bounded
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Implicit Regularization Can Drive All Norms to Infinity

A Simple Matrix Completion Problem (Cont’d)(
∗ 1
1 0

)

(i) All solutions are of rank 2 (ii) |∗| → ∞ ⇒ essentially rank → 1

Continuous measures for rank:
Distance from rank 1 := value of smallest singular value
Effective rank (erank) ≈ entropy of singular values

Definition (Rank suboptimality)
rank-subopt := max{Distance from rank 1 , erank − inf∗ erank}

Proposition
rank-subopt is maximized when ∗ = 0, and is minimized as |∗| → ∞

Contradiction between norm and rank minimization
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Implicit Regularization Can Drive All Norms to Infinity

Loss ↘ ⇒ Norms ↗ Rank ↘

Theorem

If det(WL:1(0)) > 0 at init, then for any (quasi-)norm ‖·‖:
1 ‖WL:1(t)‖ = Ω(1/

√
`(t))

2 rank-subopt(WL:1(t)) = O(
√
`(t))

`(t)→ 0 implies:
1 All norms (and quasi-norms) driven towards ∞

2 Rank is essentially minimized

Claim
Assumption on det(WL:1(0)) holds with prob 0.5 under standard inits

Implicit regularization 6= norm minimization!
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Implicit Regularization Can Drive All Norms to Infinity

Loss ↘ ⇒ Norms ↗ Rank ↘ — Proof Sketch

Theorem
If det(WL:1(0)) > 0 at init, then for any (quasi-)norm ‖·‖:

1 ‖WL:1(t)‖ = Ω(1/
√
`(t))

2 rank-subopt(WL:1(t)) = O(
√
`(t))

Proof Sketch

GF trajectory analysis: det(WL:1(t)) does not change sign1

=⇒ |w1,1(t)| → ∞ (behaves as Ω(1/
√
`(t)))

Bound on |w1,1(t)| implies bounds for norms and rank suboptimality

1based on singular values differential equations from Arora et al. 2019
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Implicit Regularization Can Drive All Norms to Infinity

Convergence to Global Minimum
Customary
Separating aspects of convergence to global min and implicit regularization

↑
commonly observed in practice

Convergence to Zero Loss (in our setting)

Experiments: GD consistently finds global min

Proof for depth 2 with scaled identity init

Proposition
If at init WL:1(0) = α · I, for depth L = 2 and 0 < α ≤ 1, then `(t)→ 0

Proof Approach
Careful analysis of GF differential equations
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Implicit Regularization Can Drive All Norms to Infinity

Robustness to Perturbations
What happens when observations are perturbed?(

∗ 1
1 0

)

=⇒
(
∗ z
z ′ ε

)
non-zero z , z ′
arbitrary ε

ε = 0⇒ all norms driven to ∞ and rank is minimized

Phenomenon gracefully recedes as ε perturbed from 0

Same results hold when changing unobserved entry location
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Same results hold when changing unobserved entry location
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Implicit Regularization Can Drive All Norms to Infinity

Experiments: Unobserved Entry ↗

(
∗ 1
1 0

) (
∗ −2
0.5 ε

)

Theory transfers to practice: unobserved entry → ∞
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Implicit Regularization = Rank Minimization?

Outline

1 Implicit Regularization in Deep Learning

2 Case Study: Matrix Factorization

3 Implicit Regularization Can Drive All Norms to Infinity

4 Implicit Regularization = Rank Minimization?
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Implicit Regularization = Rank Minimization?

Implicit Regularization = Rank Minimization?
Analyzed Setting (our work)

Contrast between norm and rank minimization

Implicit regularization drives norms to∞ to minimize rank

Past Work

Empirical evidence: low-rank tendency in matrix factorization

Theoretical analysis: sparsity in singular values (Arora et al. 2019)

Better interpretation — rank minimization?

Does this interpretation extend beyond matrix factorization?
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Implicit Regularization = Rank Minimization?

Tensor Factorization ←→ Non-Linear Neural Network

ConvACs are competitive in practice, and admit algebraic structure
Extensively studied (e.g. Cohen et al. 2016, Cohen & Shashua 2016, Cohen & Shashua 2017)

Tensor factorizations correspond to non-linear NN
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Implicit Regularization = Rank Minimization?

Tensor Completion
Tensor completion: recover low-rank tensor given subset of entries

Natural extension of matrix completion

Tensor Basics
Tensor — N-dimensional array (N = order of tensor)

Tensor rank — minimal R s.t. W =
∑R

r=1w
(1)
r ⊗ · · · ⊗w(N)

r

⊗ := outer product , w(i)
r ∈ Rdi

For N = 2 this is exactly matrix rank
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Implicit Regularization = Rank Minimization?

From Matrix to Tensor Factorization

Parameterize solution as tensor factorization:

W =
R∑

r=1
w(1)

r ⊗ · · · ⊗w(N)
r

R taken large enough to not constrain rank

Does W converge to low-rank tensor when running GD w.r.t.
{
w(n)

r
}

r ,n
?
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Implicit Regularization = Rank Minimization?

Tensor Completion Experiments
Order 4 Rank 1 Tensor Completion

"linear" baseline — exactly fits observations, 0 elsewhere

GD drives rank of a non-linear NN towards minimum!
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Implicit Regularization = Rank Minimization?

Implicit Rank Minimization in Deep Learning?

𝑾𝑳 𝑾𝟐 𝑾𝟏* * * 

Linear Neural Networks

𝑾𝑳 𝑾𝟐 𝑾𝟏 𝒙𝒚𝑾𝑳:𝟏 =

Matrix Factorizations

Theory & Experiments: implicit regularization minimizes matrix rank

Convolutional Arithmetic Circuits
(Non-Linear Neural Networks)

Tensor Factorizations

= + + + 

⊗ ⊗ ⊗

Experiments: implicit regularization minimizes tensor rank

Hypothesis
Implicit regularization in DL minimizes rank of input-output mapping

If true, may be key to explaining generalization
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