Implicit Regularization in Deep Learning May Not Be Explainable by Norms

Noam Razin

based on joint work with Nadav Cohen

Tel Aviv University

Outline

1 Implicit Regularization in Deep Learning

- 2 Case Study: Matrix Factorization
- 3 Implicit Regularization Can Drive All Norms to Infinity
- Implicit Regularization = Rank Minimization?
- 5 Conclusion

In classical learning theory generalization exhibits the bias-variance tradeoff

In classical learning theory generalization exhibits the bias-variance tradeoff

Tradeoff can be controlled through regularization:

In classical learning theory generalization exhibits the bias-variance tradeoff

Tradeoff can be controlled through regularization:

Limiting model size

In classical learning theory generalization exhibits the bias-variance tradeoff

Tradeoff can be controlled through regularization:

- Limiting model size
- Adding term to loss (typically a norm)

Generalization in Deep Learning (DL)

DNNs In Practice

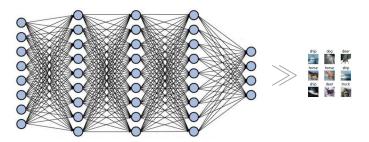
Generalize without explicit regularization:

Generalization in Deep Learning (DL)

DNNs In Practice

Generalize without explicit regularization:

 $\textcircled{0} \# \text{ of learned weights } \gg \# \text{ of training examples}$

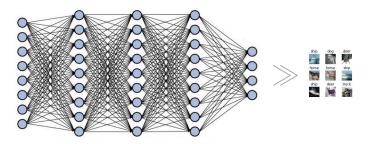


Generalization in Deep Learning (DL)

DNNs In Practice

Generalize without explicit regularization:

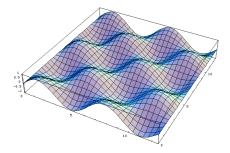
 $\textcircled{0} \# \text{ of learned weights } \gg \# \text{ of training examples}$



Loss unchanged (e.g. no weight decay/dropout)

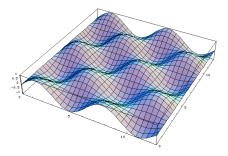
Optimization Induces an Implicit Regularization

Multiple global minima: some generalize well, others don't



Optimization Induces an Implicit Regularization

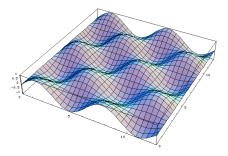
Multiple global minima: some generalize well, others don't



Solution found by Gradient Descent (GD) often generalizes well

Optimization Induces an Implicit Regularization

Multiple global minima: some generalize well, others don't



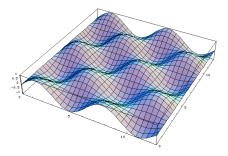
Solution found by Gradient Descent (GD) often generalizes well

Conventional Wisdom

Gradient-based optimization induces an implicit regularization

Optimization Induces an Implicit Regularization

Multiple global minima: some generalize well, others don't



Solution found by Gradient Descent (GD) often generalizes well

Conventional Wisdom

Gradient-based optimization induces an implicit regularization

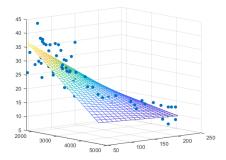
Question

Can we mathematically understand this effect in concrete settings?

Noam Razin (TAU)

Warm Up: Linear Models

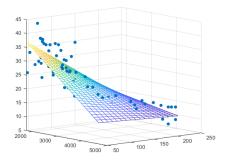
Linear Regression



When # parameters > # training examples:

Warm Up: Linear Models

Linear Regression



When # parameters > # training examples: GD initialized at 0 converges to min ℓ_2 norm solution

$$\underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\|_2 \text{ s.t. } X\mathbf{w} = y$$

Does Implicit Norm Minimization Transfer to DL?

Widespread Hope

GD in DL finds solutions with minimal norm (or quasi-norm)

 $\underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\| \text{ s.t. } \mathbf{w} \text{ is global min}$

Does Implicit Norm Minimization Transfer to DL?

Widespread Hope

GD in DL finds solutions with minimal norm (or quasi-norm)

 $\underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\| \text{ s.t. } \mathbf{w} \text{ is global min}$

Demonstrated in various settings, e.g.:

- Neyshabur et al. 2015
- Gunasekar et al. 2017
- Soudry et al. 2018
- Gunasekar et al. 2018a
- Gunasekar et al. 2018b
- Li et al. 2018
- Jacot et al. 2018
- Mei et al. 2019
- Ji & Telgarsky 2019a

- Ji & Telgarsky 2019b
- Wu et al. 2019
- Oymak & Soltanolkotabi 2019
- Nacson et al. 2019a
- Nacson et al. 2019b
- Woodworth et al. 2020
- Lyu & Li 2020
- Ali et al. 2020
- Chizat & Bach 2020
- Belabbas 2020

Outline

- Implicit Regularization in Deep Learning
- 2 Case Study: Matrix Factorization
 - 3 Implicit Regularization Can Drive All Norms to Infinity
 - Implicit Regularization = Rank Minimization?
 - 5 Conclusion

Matrix completion: recover low-rank matrix given subset of entries

Matrix completion: recover low-rank matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Matrix completion: recover low-rank matrix given subset of entries

	Avanyans		NOW YOU SEE ME	THE WOLF
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Matrix completion: recover low-rank matrix given subset of entries

	Avenuens		NOW YOU SEE ME	OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Matrix completion: recover low-rank matrix given subset of entries

	Avanuans	THEPRESTIGE	NOW YOU SEE ME	OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

 $observed \ entries \ \longleftrightarrow \ training \ data$ $unobserved \ entries \ \longleftrightarrow \ test \ data$

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Find minimal nuclear norm solution:

min $\|W\|_{nuclear}$ s.t. $W_{ij} = b_{ij} \quad \forall (i,j) \in \Omega$

Matrix completion: recover low-rank matrix given subset of entries

	Avanuans		NOW YOU SEE ME	OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

 $observed \ entries \ \longleftrightarrow \ training \ data$ $unobserved \ entries \ \longleftrightarrow \ test \ data$

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Find minimal nuclear norm solution:

min
$$\|W\|_{nuclear}$$
 s.t. $W_{ij} = b_{ij} \quad \forall (i,j) \in \Omega$

Perfectly recovers if observations are sufficiently many (Candes & Recht 2008)

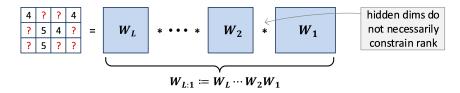
Matrix Factorization \leftrightarrow Linear Neural Network (LNN)

Deep Learning Approach

Matrix Factorization \leftrightarrow Linear Neural Network (LNN)

Deep Learning Approach

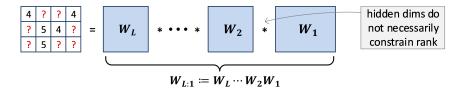
Parameterize solution as LNN and fit observations using GD (over ℓ_2 loss)



Matrix Factorization \leftrightarrow Linear Neural Network (LNN)

Deep Learning Approach

Parameterize solution as LNN and fit observations using GD (over ℓ_2 loss)



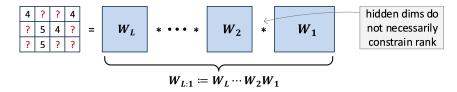
GD is run w.r.t. W_1, \ldots, W_L over:

$$\ell(W_{L:1}) = \frac{1}{2} \sum_{(i,j) \in \Omega} ((W_{L:1})_{ij} - b_{ij})^2$$

Matrix Factorization \leftrightarrow Linear Neural Network (LNN)

Deep Learning Approach

Parameterize solution as LNN and fit observations using GD (over ℓ_2 loss)



GD is run w.r.t. W_1, \ldots, W_L over:

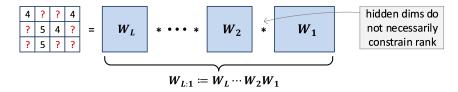
$$\ell(W_{L:1}) = \frac{1}{2} \sum_{(i,j) \in \Omega} ((W_{L:1})_{ij} - b_{ij})^2$$

To which solutions does **product matrix** $W_{L:1}$ converge?

Matrix Factorization \leftrightarrow Linear Neural Network (LNN)

Deep Learning Approach

Parameterize solution as LNN and fit observations using GD (over ℓ_2 loss)



GD is run w.r.t. W_1, \ldots, W_L over:

$$\ell(W_{L:1}) = \frac{1}{2} \sum_{(i,j) \in \Omega} ((W_{L:1})_{ij} - b_{ij})^2$$

To which solutions does **product matrix** $W_{L:1}$ converge?

Empirical phenomenon: low-rank matrix often recovered accurately

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2 matrix factorization converges to min nuclear norm solution.

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2 matrix factorization converges to min nuclear norm solution.

GD implicitly solves convex programming approach?

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2 matrix factorization converges to min nuclear norm solution.

GD implicitly solves convex programming approach?

Gunasekar et al. supported conjecture with:

- Experiments
- Proof for certain restricted case

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2 matrix factorization converges to min nuclear norm solution.

GD implicitly solves convex programming approach?

Gunasekar et al. supported conjecture with:

- Experiments
- Proof for certain restricted case

Conjecture established under other restricted conditions:

- Li et al. 2018
- Belabbas 2020

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm $\|\cdot\|$, exist observations for which small learning rate and init can not ensure GD converges to min $\|\cdot\|$ solution.

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm $\|\cdot\|$, exist observations for which small learning rate and init can not ensure GD converges to min $\|\cdot\|$ solution.

Arora et al. supported conjecture with:

• Experiments: nuclear norm not always minimized, bias to low rank

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm $\|\cdot\|$, exist observations for which small learning rate and init can not ensure GD converges to min $\|\cdot\|$ solution.

Arora et al. supported conjecture with:

- Experiments: nuclear norm not always minimized, bias to low rank
- Dynamical analysis of singular values: GD promotes sparse spectrum

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm $\|\cdot\|$, exist observations for which small learning rate and init can not ensure GD converges to min $\|\cdot\|$ solution.

Arora et al. supported conjecture with:

- Experiments: nuclear norm not always minimized, bias to low rank
- Dynamical analysis of singular values: GD promotes sparse spectrum $$\uparrow$$

suggests tendency to low rank

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm $\|\cdot\|$, exist observations for which small learning rate and init can not ensure GD converges to min $\|\cdot\|$ solution.

Arora et al. supported conjecture with:

- Experiments: nuclear norm not always minimized, bias to low rank

Open Question

Does the implicit regularization in matrix factorization minimize a norm?

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

() All norms (and quasi-norms) are driven towards ∞

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

- **(**) All norms (and quasi-norms) are driven towards ∞
- **2** Rank is essentially minimized

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

- **1** All norms (and quasi-norms) are driven towards ∞
- **2** Rank is essentially minimized

Affirms conjecture of Arora et al. 2019

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

- **1** All norms (and quasi-norms) are driven towards ∞
- **2** Rank is essentially minimized

Affirms conjecture of Arora et al. 2019

Result stronger than conjecture:

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

- **1** All norms (and quasi-norms) are driven towards ∞
- **2** Rank is essentially minimized

Affirms conjecture of Arora et al. 2019

Result stronger than conjecture:

- Settings jointly disqualify all norms
- Norms driven towards ∞

Outline

- Implicit Regularization in Deep Learning
- 2 Case Study: Matrix Factorization

Implicit Regularization Can Drive All Norms to Infinity

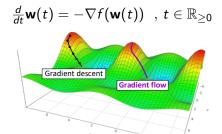
Implicit Regularization = Rank Minimization?

5 Conclusion

Common surrogate for GD with small learning rate and init:1

¹(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)

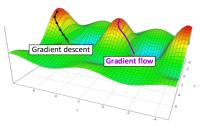
<u>Common surrogate for GD with small learning rate and init</u>:¹ **Gradient flow** (GF) is a continuous version of GD (step size \rightarrow 0):



¹(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)

<u>Common surrogate for GD with small learning rate and init</u>:¹ **Gradient flow** (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} {f w}(t) = -
abla f({f w}(t)) \ , \ t \in {\mathbb R}_{\geq 0}$$

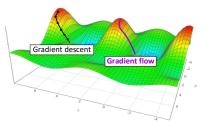


Weights $W_1 \dots W_L$ are **balanced** at init: $W_{j+1}^\top W_{j+1} = W_j W_j^\top$, $\forall j$.

¹(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)

<u>Common surrogate for GD with small learning rate and init</u>:¹ **Gradient flow** (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} {f w}(t) = -
abla f({f w}(t)) \ , \ t \in {\mathbb R}_{\geq 0}$$

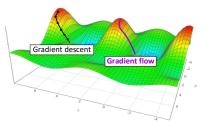


Weights $W_1 \dots W_L$ are **balanced** at init: $W_{j+1}^\top W_{j+1} = W_j W_j^\top$, $\forall j$. \uparrow Holds approximately under ≈ 0 init, exactly under residual (I_d) init

¹(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)

<u>Common surrogate for GD with small learning rate and init</u>:¹ **Gradient flow** (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} {f w}(t) = -
abla f({f w}(t)) \ , \ t \in {\mathbb R}_{\geq 0}$$



Weights $W_1 \dots W_L$ are **balanced** at init: $W_{j+1}^\top W_{j+1} = W_j W_j^\top$, $\forall j$. \uparrow Holds approximately under ≈ 0 init, exactly under residual (I_d) init

Closely matches GD in practice for linear neural networks

¹(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)

Noam Razin (TAU)

Implicit Regularization in DL \neq Norms

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

Min Frobenius norm $\iff * = 0$ (depth L = 1 solution)

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

Min Frobenius norm $\iff * = 0$ (depth L = 1 solution) Min nuclear norm $\iff * = 0$

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

Min Frobenius norm $\iff * = 0$ (depth L = 1 solution)

Min nuclear norm $\iff * = 0$

<u>Generally</u>: Schatten-p (quasi-)norm := $(\sum_i \sigma_i^p)^{1/p}$ (σ_i - singular values)

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

Min Frobenius norm $\iff * = 0$ (depth L = 1 solution)

Min nuclear norm $\iff * = 0$

<u>Generally</u>: Schatten-*p* (quasi-)norm := $(\sum_i \sigma_i^p)^{1/p}$ (σ_i - singular values)

Proposition

Schatten-p (quasi-)norms are minimized $\iff * = 0$

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

Min Frobenius norm $\iff * = 0$ (depth L = 1 solution)

Min nuclear norm $\iff * = 0$

<u>Generally</u>: Schatten-p (quasi-)norm := $(\sum_i \sigma_i^p)^{1/p}$ (σ_i - singular values)

Proposition

Schatten-p (quasi-)norms are minimized $\iff * = 0$

Arbitrary norms (or quasi-norms): Proposition For minimal ||·|| solutions, * is bounded

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2 (ii) $|*| \rightarrow \infty \Rightarrow$ essentially $rank \rightarrow 1$

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2

(ii)
$$|*| \rightarrow \infty \Rightarrow$$
 essentially $rank \rightarrow 1$

Continuous measures for rank:

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2 (ii) $|*| \to \infty \Rightarrow$ essentially $rank \to 1$

Continuous measures for rank:

• Distance from rank 1 := value of smallest singular value

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2 (ii) $|*| \rightarrow \infty \Rightarrow$ essentially $rank \rightarrow 1$

Continuous measures for rank:

- Distance from rank 1 := value of smallest singular value
- Effective rank (erank) \approx entropy of singular values

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2 (ii) $|*| \rightarrow \infty \Rightarrow$ essentially $rank \rightarrow 1$

Continuous measures for rank:

- Distance from rank 1 := value of smallest singular value
- Effective rank (erank) \approx entropy of singular values

Definition (Rank suboptimality)

rank-subopt := max{*Distance from rank* 1, *erank* - inf_{*} *erank*}

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2 (ii) $|*| \rightarrow \infty \Rightarrow$ essentially $rank \rightarrow 1$

Continuous measures for rank:

- Distance from rank 1 := value of smallest singular value
- Effective rank (erank) \approx entropy of singular values

Definition (Rank suboptimality)

rank-subopt := max{*Distance from rank* 1, *erank* - inf_{*} *erank*}

Proposition

rank-subopt is maximized when *= 0, and is minimized as $|*| \rightarrow \infty$

A Simple Matrix Completion Problem (Cont'd)

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

(i) All solutions are of rank 2 (ii) $|*| \to \infty \Rightarrow$ essentially $rank \to 1$

Continuous measures for rank:

- Distance from rank 1 := value of smallest singular value
- Effective rank (erank) \approx entropy of singular values

Definition (Rank suboptimality)

rank-subopt := max{Distance from rank 1 , erank - inf* erank}

Proposition

rank-subopt is maximized when *= 0, and is minimized as $|*| \rightarrow \infty$

Contradiction between norm and rank minimization

Noam Razin (TAU)

Implicit Regularization in DL \neq Norms

 $Loss \searrow \Rightarrow Norms \nearrow Rank \searrow$

Theorem

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$:

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

• rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{l+1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

• rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

 $\ell(t) \rightarrow 0$ implies:

- **4** All norms (and quasi-norms) driven towards ∞
- **2** Rank is essentially minimized

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{l+1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

• rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

 $\ell(t) \rightarrow 0$ implies:

4 All norms (and quasi-norms) driven towards ∞

2 Rank is essentially minimized

Claim

Assumption on det($W_{L:1}(0)$) holds with prob 0.5 under standard inits

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{l+1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

• rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

 $\ell(t) \rightarrow 0$ implies:

4 All norms (and quasi-norms) driven towards ∞

2 Rank is essentially minimized

Claim

Assumption on det($W_{L:1}(0)$) holds with prob 0.5 under standard inits

Implicit regularization \neq norm minimization!

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow — Proof Sketch

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$:

1 $||W_{L:1}(t)|| = \Omega(1/\sqrt{\ell(t)})$

• rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

Proof Sketch

¹based on singular values differential equations from Arora et al. 2019

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow — Proof Sketch

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

2
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Proof Sketch

GF trajectory analysis: $det(W_{L:1}(t))$ does not change sign¹

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow — Proof Sketch

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

2
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Proof Sketch

GF trajectory analysis: $det(W_{L:1}(t))$ does not change sign¹

$$\det(W_{L:1}(t)) = w_{1,1}(t)w_{2,2}(t) - w_{1,2}(t)w_{2,1}(t) > 0$$

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow — Proof Sketch

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

2
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Proof Sketch

GF trajectory analysis: $det(W_{L:1}(t))$ does not change sign¹

$$\det(W_{L:1}(t)) = w_{1,1}(t) \underbrace{w_{2,2}(t)}_{\rightarrow 0} - \underbrace{w_{1,2}(t)w_{2,1}(t)}_{\rightarrow 1} > 0$$

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow — Proof Sketch

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

2
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Proof Sketch

GF trajectory analysis: $det(W_{L:1}(t))$ does not change sign¹

$$\det(W_{L:1}(t)) = w_{1,1}(t) \underbrace{w_{2,2}(t) - w_{1,2}(t) w_{2,1}(t)}_{\to 0} > 0$$

 $\implies |w_{1,1}(t)| \rightarrow \infty$ (behaves as $\Omega(1/\sqrt{\ell(t)}))$

Loss $\searrow \Rightarrow$ Norms \nearrow Rank \searrow — Proof Sketch

Theorem

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

2
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Proof Sketch

GF trajectory analysis: $det(W_{L:1}(t))$ does not change sign¹

$$\det(W_{L:1}(t)) = w_{1,1}(t) \underbrace{w_{2,2}(t) - w_{1,2}(t) w_{2,1}(t)}_{\rightarrow 0} > 0$$

 $\implies |w_{1,1}(t)| \rightarrow \infty$ (behaves as $\Omega(1/\sqrt{\ell(t)}))$

Bound on $|w_{1,1}(t)|$ implies bounds for norms and rank suboptimality

¹based on singular values differential equations from Arora et al. 2019 Noam Razin (TAU) Implicit Regularization in DL ≠ Norms

Customary

Separating aspects of convergence to global min and implicit regularization

Customary

Separating aspects of convergence to global min and implicit regularization

commonly observed in practice

Customary

Separating aspects of convergence to global min and implicit regularization

commonly observed in practice

Convergence to Zero Loss (in our setting)

Customary

Convergence to Zero Loss (in our setting)

• Experiments: GD consistently finds global min

Customary

Convergence to Zero Loss (in our setting)

- Experiments: GD consistently finds global min
- Proof for depth 2 with scaled identity init

Customary

Convergence to Zero Loss (in our setting)

- Experiments: GD consistently finds global min
- Proof for depth 2 with scaled identity init

Proposition

If at init $W_{L:1}(0) = lpha \cdot I$, for depth L = 2 and $0 < lpha \leq 1$, then $\ell(t) \to 0$

Customary

Convergence to Zero Loss (in our setting)

- Experiments: GD consistently finds global min
- Proof for depth 2 with scaled identity init

Proposition

If at init $W_{L:1}(0) = lpha \cdot I$, for depth L=2 and $0 < lpha \leq 1$, then $\ell(t) o 0$

Proof Approach

Careful analysis of GF differential equations

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-z} \\ \text{arbit} \end{cases}$$

non-zero z,z'arbitrary ϵ

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix}$$
 non-

non-zero z, z'arbitrary ϵ

Theorem (original setting)

If det($W_{L:1}(0)$) > 0 at init, then for any (quasi-)norm $\|\cdot\|$:

1 $||W_{L:1}(t)|| = \Omega(1/\sqrt{\ell(t)})$

3
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \text{non-zero}$$
arbitrary

Theorem (original setting)

If sign(det($W_{L:1}(0)$)) = sign(1 · 1) at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

• rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

z, z'

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-zero } z, z' \\ \text{arbitrary } \epsilon \end{array}$$

Theorem (intermediate)

If sign(det($W_{L:1}(0)$)) = sign($z \cdot z'$) at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega(1/\sqrt{\ell(t)})$

2
$$rank-subopt(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$$

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-zero } z, z' \\ \text{arbitrary } \epsilon \end{array}$$

Theorem (intermediate)

If sign(det($W_{L:1}(0)$)) = sign($z \cdot z'$) at init, then for any (quasi-)norm $\|\cdot\|$: $||W_{L:1}(t)|| = \Omega\left(\min\{|z|, |z'|\} / (|\epsilon| + \sqrt{2\ell(t)})\right)$

2 rank-subopt $(W_{L:1}(t)) = \mathcal{O}(\sqrt{\ell(t)})$

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-zero } z, z \\ \text{arbitrary } \epsilon \end{array}$$

Theorem

If sign(det($W_{L:1}(0)$)) = sign($z \cdot z'$) at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega\left(\min\{|z|, |z'|\} / (|\epsilon| + \sqrt{2\ell(t)})\right)$

3 rank-subopt(
$$W_{L:1}(t)$$
) = $\mathcal{O}\left((|\epsilon| + \sqrt{2\ell(t)}) / \min\{|z|, |z'|\}\right)$

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-zero } z, z' \\ \text{arbitrary } \epsilon \end{array}$$

Theorem

If sign(det($W_{L:1}(0)$)) = sign($z \cdot z'$) at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega\left(\min\{|z|, |z'|\} / (|\epsilon| + \sqrt{2\ell(t)})\right)$

3
$$rank-subopt(W_{L:1}(t)) = O\left((|\epsilon| + \sqrt{2\ell(t)}) / \min\{|z|, |z'|\}\right)$$

• $\epsilon = 0 \Rightarrow$ all norms driven to ∞ and rank is minimized

Robustness to Perturbations

What happens when observations are perturbed?

$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-zero } z, z' \\ \text{arbitrary } \epsilon \end{array}$$

Theorem

- If sign(det($W_{L:1}(0)$)) = sign($z \cdot z'$) at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega\left(\min\{|z|, |z'|\} / (|\epsilon| + \sqrt{2\ell(t)})\right)$
 - 3 rank-subopt($W_{L:1}(t)$) = $\mathcal{O}\left((|\epsilon| + \sqrt{2\ell(t)}) / \min\{|z|, |z'|\}\right)$
 - $\epsilon = \mathbf{0} \Rightarrow$ all norms driven to ∞ and rank is minimized
 - Phenomenon gracefully recedes as ϵ perturbed from 0

Robustness to Perturbations

What happens when observations are perturbed?

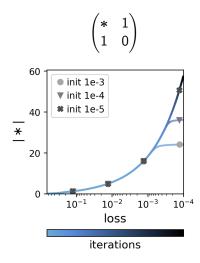
$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} * & z \\ z' & \epsilon \end{pmatrix} \quad \begin{array}{c} \text{non-zero } z, z' \\ \text{arbitrary } \epsilon \end{array}$$

Theorem

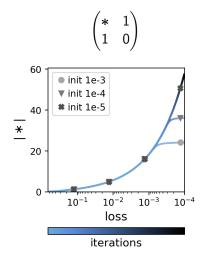
- If sign(det($W_{L:1}(0)$)) = sign($z \cdot z'$) at init, then for any (quasi-)norm $\|\cdot\|$: $\|W_{L:1}(t)\| = \Omega\left(\min\{|z|, |z'|\} / (|\epsilon| + \sqrt{2\ell(t)})\right)$
 - 3 rank-subopt($W_{L:1}(t)$) = $\mathcal{O}\left((|\epsilon| + \sqrt{2\ell(t)}) / \min\{|z|, |z'|\}\right)$
 - $\epsilon = \mathbf{0} \Rightarrow$ all norms driven to ∞ and rank is minimized
 - Phenomenon gracefully recedes as ϵ perturbed from 0

Same results hold when changing unobserved entry location

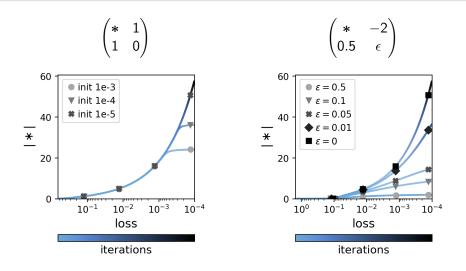
$$\begin{pmatrix} * & 1 \\ 1 & 0 \end{pmatrix}$$



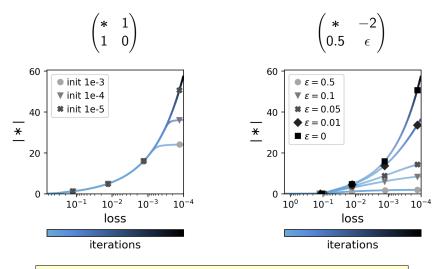
Experiments: Unobserved Entry >



 $\begin{pmatrix} * & -2 \\ 0.5 & \epsilon \end{pmatrix}$



Experiments: Unobserved Entry >



Theory transfers to practice: unobserved entry $ightarrow\infty$

Outline

- Implicit Regularization in Deep Learning
- 2 Case Study: Matrix Factorization
- Implicit Regularization Can Drive All Norms to Infinity
- Implicit Regularization = Rank Minimization?

5 Conclusion

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

• Contrast between norm and rank minimization

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

- Contrast between norm and rank minimization
- Implicit regularization drives norms to ∞ to minimize rank

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

- Contrast between norm and rank minimization
- Implicit regularization drives norms to ∞ to minimize rank

Past Work

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

- Contrast between norm and rank minimization
- Implicit regularization drives norms to ∞ to minimize rank

Past Work

• Empirical evidence: low-rank tendency in matrix factorization

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

- Contrast between norm and rank minimization
- Implicit regularization drives norms to ∞ to minimize rank

Past Work

- Empirical evidence: low-rank tendency in matrix factorization
- Theoretical analysis: sparsity in singular values (Arora et al. 2019)

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

- Contrast between norm and rank minimization
- Implicit regularization drives norms to ∞ to minimize rank

Past Work

- Empirical evidence: low-rank tendency in matrix factorization
- Theoretical analysis: sparsity in singular values (Arora et al. 2019)

Better interpretation — rank minimization?

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

- Contrast between norm and rank minimization
- Implicit regularization drives norms to ∞ to minimize rank

Past Work

- Empirical evidence: low-rank tendency in matrix factorization
- Theoretical analysis: sparsity in singular values (Arora et al. 2019)

Better interpretation — rank minimization?

Does this interpretation extend beyond matrix factorization?

Tensor Factorization ↔ Non-Linear Neural Network

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

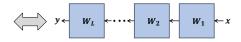
Matrix Factorizations

Linear Neural Networks

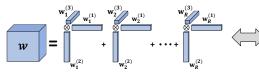
Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Matrix Factorizations

Linear Neural Networks

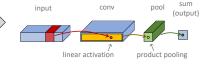


Tensor Factorizations



Convolutional Arithmetic Circuits

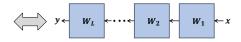
(Non-Linear Neural Networks)



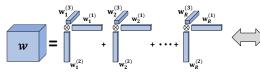
Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Matrix Factorizations

Linear Neural Networks

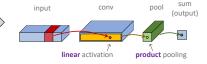


Tensor Factorizations

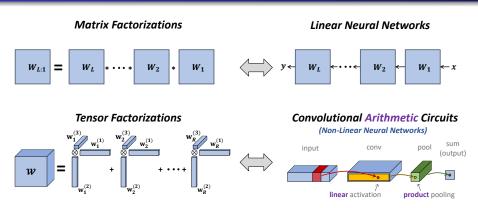


Convolutional Arithmetic Circuits

(Non-Linear Neural Networks)

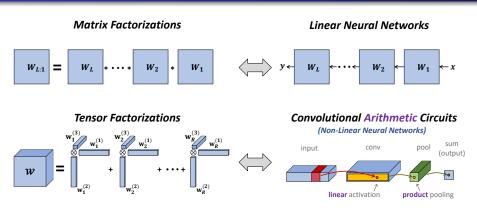


Tensor Factorization \longleftrightarrow Non-Linear Neural Network



ConvACs are competitive in practice, and admit algebraic structure Extensively studied (e.g. Cohen et al. 2016, Cohen & Shashua 2016, Cohen & Shashua 2017)

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

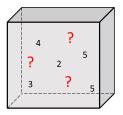


ConvACs are competitive in practice, and admit algebraic structure Extensively studied (e.g. Cohen et al. 2016, Cohen & Shashua 2016, Cohen & Shashua 2017)

Tensor factorizations correspond to non-linear NN

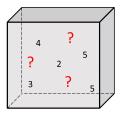
Tensor completion: recover low-rank tensor given subset of entries

Tensor completion: recover low-rank tensor given subset of entries



Natural extension of matrix completion

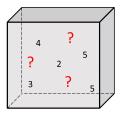
Tensor completion: recover low-rank tensor given subset of entries



Natural extension of matrix completion

Tensor Basics

Tensor completion: recover low-rank tensor given subset of entries

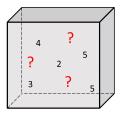


Natural extension of matrix completion

Tensor Basics

Tensor — *N*-dimensional array (N =order of tensor)

Tensor completion: recover low-rank tensor given subset of entries



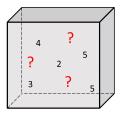
Natural extension of matrix completion

Tensor Basics

Tensor — *N*-dimensional array (N =order of tensor)

Tensor rank — minimal
$$R$$
 s.t. $\mathcal{W} = \sum_{r=1}^{R} \mathbf{w}_{r}^{(1)} \otimes \cdots \otimes \mathbf{w}_{r}^{(N)}$
 $\otimes := \text{outer product} , \mathbf{w}_{r}^{(i)} \in \mathbb{R}^{d_{i}}$

Tensor completion: recover low-rank tensor given subset of entries



Natural extension of matrix completion

Tensor Basics

Tensor — *N*-dimensional array (N =order of tensor)

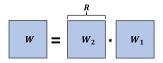
Tensor rank — minimal
$$R$$
 s.t. $\mathcal{W} = \sum_{r=1}^{R} \mathbf{w}_{r}^{(1)} \otimes \cdots \otimes \mathbf{w}_{r}^{(N)}$
 $\otimes := \text{outer product} , \mathbf{w}_{r}^{(i)} \in \mathbb{R}^{d_{r}}$

For N = 2 this is exactly matrix rank

From Matrix to Tensor Factorization

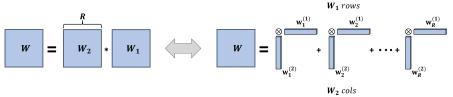
From Matrix to Tensor Factorization

Matrix Factorization



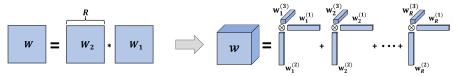
From Matrix to Tensor Factorization

Matrix Factorization



From Matrix to Tensor Factorization

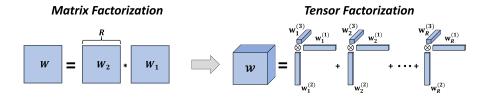
Matrix Factorization



From Matrix to Tensor Factorization

Matrix FactorizationTensor Factorization $w = w_2$ w_1 $w_1^{(3)}$ $w_1^{(1)}$ $w_2^{(3)}$ $w_2^{(1)}$ $w_k^{(3)}$ $w = w_2$ w_1 w_2 w_1 w_2 w_2 w_2 $w_k^{(3)}$ $w_k^{(1)}$

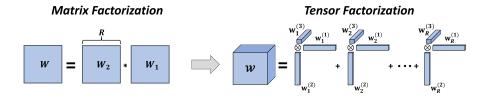
From Matrix to Tensor Factorization



Parameterize solution as tensor factorization:

$$\mathcal{W} = \sum_{r=1}^{R} \mathbf{w}_{r}^{(1)} \otimes \cdots \otimes \mathbf{w}_{r}^{(N)}$$

From Matrix to Tensor Factorization

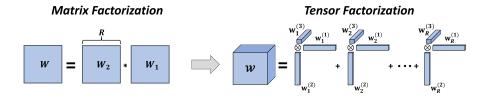


Parameterize solution as tensor factorization:

$$\mathcal{W} = \sum_{r=1}^{R} \mathbf{w}_{r}^{(1)} \otimes \cdots \otimes \mathbf{w}_{r}^{(N)}$$

 ${\it R}$ taken large enough to not constrain rank

From Matrix to Tensor Factorization



Parameterize solution as tensor factorization:

$$\mathcal{W} = \sum_{r=1}^{R} \mathbf{w}_{r}^{(1)} \otimes \cdots \otimes \mathbf{w}_{r}^{(N)}$$

R taken large enough to not constrain rank

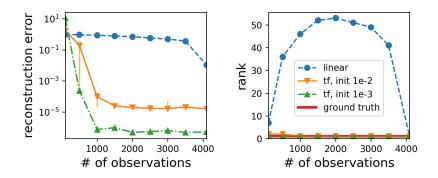
Does \mathcal{W} converge to low-rank tensor when running GD w.r.t. $\left\{\mathbf{w}_{r}^{(n)}\right\}_{r,n}$?

Tensor Completion Experiments

Order 4 Rank 1 Tensor Completion

Tensor Completion Experiments

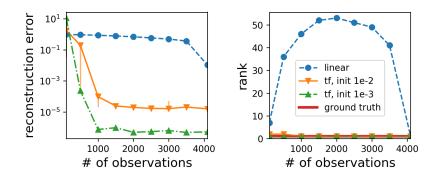
Order 4 Rank 1 Tensor Completion



"linear" baseline — exactly fits observations, 0 elsewhere

Tensor Completion Experiments

Order 4 Rank 1 Tensor Completion



"linear" baseline — exactly fits observations, 0 elsewhere

GD drives rank of a non-linear NN towards minimum!

Implicit Rank Minimization in Deep Learning?

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations

Linear Neural Networks

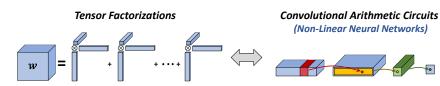
Theory & Experiments: implicit regularization minimizes matrix rank

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations

Linear Neural Networks

Theory & Experiments: implicit regularization minimizes matrix rank

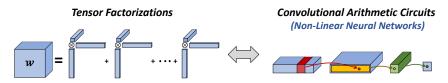


Implicit Rank Minimization in Deep Learning?

Matrix Factorizations

Linear Neural Networks

Theory & Experiments: implicit regularization minimizes matrix rank



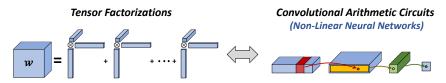
Experiments: implicit regularization minimizes tensor rank

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations

Linear Neural Networks

Theory & Experiments: implicit regularization minimizes matrix rank



Experiments: implicit regularization minimizes tensor rank

Hypothesis

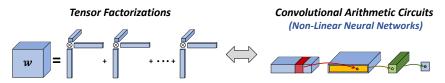
Implicit regularization in DL minimizes rank of input-output mapping

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations

Linear Neural Networks

Theory & Experiments: implicit regularization minimizes matrix rank



Experiments: implicit regularization minimizes tensor rank

Hypothesis

Implicit regularization in DL minimizes rank of input-output mapping

If true, may be key to explaining generalization

Outline

- Implicit Regularization in Deep Learning
- 2 Case Study: Matrix Factorization
- 3 Implicit Regularization Can Drive All Norms to Infinity
- Implicit Regularization = Rank Minimization?

Implicit Regularization \neq Norm Minimization

 \bullet Matrix factorization: exist cases where all norms go to ∞

Implicit Regularization \neq Norm Minimization

- Matrix factorization: exist cases where all norms go to ∞
- Unlikely implicit regularization in DL = norm minimization

Implicit Regularization \neq Norm Minimization

- Matrix factorization: exist cases where all norms go to ∞
- Unlikely implicit regularization in DL = norm minimization

Better Interpretation: Bias to Low Rank?

Implicit Regularization \neq Norm Minimization

- Matrix factorization: exist cases where all norms go to ∞
- Unlikely implicit regularization in DL = norm minimization

Better Interpretation: Bias to Low Rank?

• Matrix factorization: growing empirical and theoretical evidence

Conclusion

Implicit Regularization \neq Norm Minimization

- Matrix factorization: exist cases where all norms go to ∞
- Unlikely implicit regularization in DL = norm minimization

Better Interpretation: Bias to Low Rank?

- Matrix factorization: growing empirical and theoretical evidence
- Extends to certain type of non-linear NN

Conclusion

Implicit Regularization \neq Norm Minimization

- Matrix factorization: exist cases where all norms go to ∞
- Unlikely implicit regularization in DL = norm minimization

Better Interpretation: Bias to Low Rank?

- Matrix factorization: growing empirical and theoretical evidence
- Extends to certain type of non-linear NN

Looking Forward

Developing notions of rank for input-output mappings of NNs may be key

Conclusion

Implicit Regularization \neq Norm Minimization

- Matrix factorization: exist cases where all norms go to ∞
- Unlikely implicit regularization in DL = norm minimization

Better Interpretation: Bias to Low Rank?

- Matrix factorization: growing empirical and theoretical evidence
- Extends to certain type of non-linear NN

Looking Forward

Developing notions of rank for input-output mappings of NNs may be key

Thank You