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Implicit Regularization in Deep Learning

Generalization via Bias-Variance Tradeoff

In classical learning theory generalization exhibits the bias-variance tradeoff

Overfitting

Tradeoff can be controlled through regularization:
@ Limiting model size

@ Adding term to loss (typically a norm)
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Generalization in Deep Learning (DL)
DNNs In Practice

Generalize without explicit regularization:
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Implicit Regularization in Deep Learning

Generalization in Deep Learning (DL)

DNNs In Practice

Generalize without explicit regularization:

@ +# of learned weights > # of training examples

ship  dog  deer
borse  horse  ship

ship  deer  truck

= -

@ Loss unchanged (e.g. no weight decay/dropout)
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Implicit Regularization in Deep Learning

Optimization Induces an Implicit Regularization

Multiple global minima: some generalize well, others don't
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Implicit Regularization in Deep Learning

Optimization Induces an Implicit Regularization

Multiple global minima: some generalize well, others don't
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Solution found by Gradient Descent (GD) often generalizes well

Conventional Wisdom

Gradient-based optimization induces an implicit regularization

Question
Can we mathematically understand this effect in concrete settings?
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Implicit Regularization in Deep Learning

Warm Up: Linear Models

Linear Regression

When # parameters > # training examples:
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Implicit Regularization in Deep Learning

Warm Up: Linear Models

Linear Regression

When # parameters > # training examples:

GD initialized at 0 converges to min ¢, norm solution

argmin |lw(, s.t. Xw =y
w
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Implicit Regularization in Deep Learning

Does Implicit Norm Minimization Transfer to DL?

Widespread Hope

GD in DL finds solutions with minimal norm (or quasi-norm)

argmin ||w|| s.t. w is global min
w
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Implicit Regularization in Deep Learning

Does Implicit Norm Minimization Transfer to DL?

Widespread Hope

GD in DL finds solutions with minimal norm (or quasi-norm)

argmin ||w|| s.t. w is global min
w

Demonstrated in various settings, e.g.:

Ji & Telgarsky 2019a Chizat & Bach 2020

Belabbas 2020

@ Neyshabur et al. 2015 @ Ji & Telgarsky 2019b
@ Gunasekar et al. 2017 @ Wau et al. 2019
@ Soudry et al. 2018 @ Oymak & Soltanolkotabi 2019
@ Gunasekar et al. 2018a @ Nacson et al. 2019a
@ Gunasekar et al. 2018b @ Nacson et al. 2019b
@ Lietal 2018 @ Woodworth et al. 2020
@ Jacot et al. 2018 @ Lyu & Li 2020
@ Mei et al. 2019 @ Ali et al. 2020
o o
o
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Setting: Matrix Completion

Matrix completion: recover low-rank matrix given subset of entries
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Case Study: Matrix Factorization

Setting: Matrix Completion

Matrix completion: recover low-rank matrix given subset of entries

Now WU:E[ME

—

.0
Bob ? observed entries <—
Alice ? 4 ? unobserved entries
Joe ? ? ?

Denote observations by {b"f}(i e
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Case Study: Matrix Factorization

Setting: Matrix Completion

Matrix completion: recover low-rank matrix given subset of entries

NOWWUSE”M
A f
.0
Bob ? observed entries <— training data
Alice ? 5 4 ? unobserved entries <+— test data
Joe ? 5 ? ?

Denote observations by {b"f}(i e

Convex Programming Approach

Find minimal nuclear norm solution:

min ||W”nuc/ear s.t. VV,'J' = b,'j V(I,j) e
Perfectly recovers if observations are sufficiently many (Candes & Recht 2008)
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Case Study: Matrix Factorization

Matrix Factorization <— Linear Neural Network (LNN)

Deep Learning Approach
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Case Study: Matrix Factorization

Matrix Factorization <— Linear Neural Network (LNN)

Deep Learning Approach

Parameterize solution as LNN and fit observations using GD (over /5 loss)

wy
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Case Study: Matrix Factorization

Matrix Factorization <— Linear Neural Network (LNN)

Deep Learning Approach
Parameterize solution as LNN and fit observations using GD (over /5 loss)

al2024a , |1 hidden dims do
2l5lal?]| = w, % soe % W, W4 not necessarily
205212 constrain rank

v
Wpq =W W;W,

* A

GD is run w.r.t. Wy, ..., W, over:

1 2
U(Wia) = 5 Z(,’j)eﬂ ((Wea)i — by)
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Case Study: Matrix Factorization

Matrix Factorization <— Linear Neural Network (LNN)

Deep Learning Approach
Parameterize solution as LNN and fit observations using GD (over /5 loss)

al2024a 1 hidden dims do
2l5lal?]| = w, % soe % W, * W4 not necessarily
: 2| 2 constrain rank

N )
Y
Wi =Wy WW,
GD is run w.r.t. Wy, ..., W, over:
1 2
U(Wia) = 5 Z(,’j)eﬂ ((Wea)y — by)

To which solutions does product matrix W;.; converge?
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Case Study: Matrix Factorization

Matrix Factorization <— Linear Neural Network (LNN)

Deep Learning Approach

Parameterize solution as LNN and fit observations using GD (over /5 loss)

al2024a 1 hidden dims do
2l5lal?]| = w, % soe % W, * W4 not necessarily
: 2| 2 constrain rank

v
Wpq =W W;W,

GD is run w.r.t. Wy, ..., W, over:

1 2
U(Wia) = 5 Z(,’j)eﬂ ((Wea)i — by)

To which solutions does product matrix W;.; converge?

Empirical phenomenon: low-rank matrix often recovered accurately
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Case Study: Matrix Factorization

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2
matrix factorization converges to min nuclear norm solution.
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Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2
matrix factorization converges to min nuclear norm solution.

GD implicitly solves convex programming approach?

Gunasekar et al. supported conjecture with:

o Experiments

@ Proof for certain restricted case
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Case Study: Matrix Factorization

Conjecture: Nuclear Norm Minimization

Conjecture (Gunasekar et al. 2017)

With small learning rate and init close to the origin, GD over depth 2
matrix factorization converges to min nuclear norm solution.

GD implicitly solves convex programming approach?

Gunasekar et al. supported conjecture with:

o Experiments

@ Proof for certain restricted case

Conjecture established under other restricted conditions:

o Lietal 2018
@ Belabbas 2020
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Case Study: Matrix Factorization

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm ||-||, exist observations for which small learning rate and init
can not ensure GD converges to min ||-|| solution.
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Conjecture (Arora et al. 2019)

For any norm ||-||, exist observations for which small learning rate and init
can not ensure GD converges to min ||-|| solution.
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Case Study: Matrix Factorization

Conjecture: No Norm is Being Minimized

Conjecture (Arora et al. 2019)

For any norm ||-||, exist observations for which small learning rate and init
can not ensure GD converges to min ||-|| solution.

Arora et al. supported conjecture with:

@ Experiments: nuclear norm not always minimized, bias to low rank

@ Dynamical analysis of singular values: GD promotes sparse spectrum

/[\

suggests tendency to low rank

Open Question

Does the implicit regularization in matrix factorization minimize a norm?
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Case Study: Matrix Factorization

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:
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Case Study: Matrix Factorization

Our Work: Resolving Open Question (Negatively)

Theorem (informal)

There exist matrix factorization settings where:

© AIl norms (and quasi-norms) are driven towards oo

© Rank is essentially minimized

‘ Affirms conjecture of Arora et al. 2019

Result stronger than conjecture:

@ Settings jointly disqualify all norms

@ Norms driven towards oo
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Implicit Regularization Can Drive All Norms to Infinity

Optimization Scheme

Common surrogate for GD with small learning rate and init:!

1(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)
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Gradient flow (GF) is a continuous version of GD (step size — 0):
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Gradient flow (GF) is a continuous version of GD (step size — 0):
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Gradient flow (GF) is a continuous version of GD (step size — 0):

dw(t) = —Vf(w(t)) , t€Rxo

Weights Wy ... W, are balanced at init: WJTH Wii1 = |/|/J|/|/JT , V5.
T

Holds approximately under =~ 0 init, exactly under residual (/) init

1(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)
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Implicit Regularization Can Drive All Norms to Infinity

Optimization Scheme

Common surrogate for GD with small learning rate and init:!

Gradient flow (GF) is a continuous version of GD (step size — 0):

dw(t) = —Vf(w(t)) , t€Rxo

Weights Wy ... W, are balanced at init: WJTH Wii1 = |/|/J|/|/JT , V5.
T
Holds approximately under =~ 0 init, exactly under residual (/) init

Closely matches GD in practice for linear neural networks

1(e.g. used by Gunasekar et al. 2017, Arora et al. 2019)
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Implicit Regularization Can Drive All Norms to Infinity

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

o)
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A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

* 1
1 0
Min Frobenius norm <= * =0 (depth L = 1 solution)

Min nuclear norm <= % =0

Generally: Schatten-p (quasi-)norm := (Z,U,’-’)l/p (o; - singular values)
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A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

* 1
1 0
Min Frobenius norm <= % =0 (depth L = 1 solution)

Min nuclear norm <= % =0

Generally: Schatten-p (quasi-)norm := (Z,U,’-’)l/p (o; - singular values)

Proposition

Schatten-p (quasi-)norms are minimized <= % = 0
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Implicit Regularization Can Drive All Norms to Infinity

A Simple Matrix Completion Problem

Consider the following 2-by-2 matrix completion problem:

* 1
1 0
Min Frobenius norm <= * =0 (depth L = 1 solution)

Min nuclear norm <= % =0

Generally: Schatten-p (quasi-)norm := (Z,U,’-’)l/p (o; - singular values)

Proposition

Schatten-p (quasi-)norms are minimized <= % = 0

Arbitrary norms (or guasi-norms):

Proposition

For minimal ||-|| solutions, * is bounded
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A Simple Matrix Completion Problem (Cont'd)

o)

(i) All solutions are of rank 2 (ii) |*| — oo = essentially rank — 1

Continuous measures for rank:

@ Distance from rank 1 := value of smallest singular value

e Effective rank (erank) = entropy of singular values

Definition (Rank suboptimality)

rank-subopt := max{ Distance from rank 1 , erank — inf erank}
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Implicit Regularization Can Drive All Norms to Infinity

A Simple Matrix Completion Problem (Cont'd)
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(i) All solutions are of rank 2 (ii) |*| — oo = essentially rank — 1

Continuous measures for rank:

@ Distance from rank 1 := value of smallest singular value

e Effective rank (erank) = entropy of singular values

Definition (Rank suboptimality)

rank-subopt := max{ Distance from rank 1 , erank — inf erank}

Proposition

rank-subopt is maximized when % = 0, and is minimized as |*| — oo
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A Simple Matrix Completion Problem (Cont'd)

o)

(i) All solutions are of rank 2 (ii) |*| — oo = essentially rank — 1

Continuous measures for rank:

@ Distance from rank 1 := value of smallest singular value

o Effective rank (erank) =~ entropy of singular values

Definition (Rank suboptimality)

rank-subopt := max{ Distance from rank 1 , erank — inf erank}

Proposition

rank-subopt is maximized when % = 0, and is minimized as |*| — oo

\ Contradiction between norm and rank minimization \
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If det(W,.1(0)) > O at init, then for any (quasi-)norm ||-||:

O [Wea(t)ll = Q(1//1(t))
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@ rank-subopt(Wy.1(t)) = O(\/L(t))

£(t) — 0 implies:

@ Al norms (and quasi-norms) driven towards oo

@ Rank is essentially minimized

Assumption on det(W,.1(0)) holds with prob 0.5 under standard inits
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Implicit Regularization Can Drive All Norms to Infinity
Loss N\, = Norms ,* Rank

If det(W,.1(0)) > O at init, then for any (quasi-)norm ||-||:

O [Wea(t)ll = Q(1//1(t))

@ rank-subopt(Wy.1(t)) = O(\/L(t))

£(t) — 0 implies:

@ Al norms (and quasi-norms) driven towards oo

@ Rank is essentially minimized

Assumption on det(W,.1(0)) holds with prob 0.5 under standard inits

’Implicit regularization # norm minimization! ‘
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Implicit Regularization Can Drive All Norms to Infinity

Loss \, = Norms * Rank \, — Proof Sketch

If det(W/,.1(0)) > O at init, then for any (quasi-)norm ||-||:
@ [Wea(t)ll = Q(1/ v
@ rank-subopt(W.1(t)) = (’)( ((t))

Proof Sketch

'based on singular values differential equations from Arora et al. 2019
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Loss \, = Norms * Rank \, — Proof Sketch

If det(W/,.1(0)) > O at init, then for any (quasi-)norm ||-||:
@ [Wea(t)ll = Q(1/ v
@ rank-subopt(W.1(t)) = (’)( ((t))

Proof Sketch
GF trajectory analysis: det(/;.1(t)) does not change sign!

det( WL;l(t)) = W171(t)W272(t) — W172(t)W271(t) >0

'based on singular values differential equations from Arora et al. 2019
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Loss \, = Norms * Rank \, — Proof Sketch

If det(W/,.1(0)) > O at init, then for any (quasi-)norm ||-||:
@ [Wea(t)ll = Q(1/ v

@ rank-subopt(W.(t)) = 0( )

Proof Sketch
GF trajectory analysis: det(/;.1(t)) does not change sign!

det( WL;l(t)) = W171(1.') |W2’2(t)| — |W1’2(t)W271(t)| >0
— 0 — 1

= |w1,1(t)| — oo (behaves as Q(1//1(t)))

'based on singular values differential equations from Arora et al. 2019
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Implicit Regularization Can Drive All Norms to Infinity

Loss \, = Norms * Rank \, — Proof Sketch

If det(W/,.1(0)) > O at init, then for any (quasi-)norm ||-||:
@ [Wea(t)ll = Q(1/ v
@ rank-subopt(W.1(t)) = (’)( o(t))

Proof Sketch
GF trajectory analysis: det(/;.1(t)) does not change sign!

det( WL;l(t)) = W171(1.') |W2’2(t)| — |W1’2(t)W271(t)| >0

— 0 — 1

= |w1,1(t)| — oo (behaves as Q(1//1(t)))

Bound on |wy 1(t)| implies bounds for norms and rank suboptimality

'based on singular values differential equations from Arora et al. 2019
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Implicit Regularization Can Drive All Norms to Infinity

Convergence to Global Minimum

Customary
Separating aspects of convergence to global min and implicit regularization
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Convergence to Global Minimum

Customary

Separating aspects of convergence to global min and implicit regularization

/l\

commonly observed in practice

Convergence to Zero Loss (in our setting)

@ Experiments: GD consistently finds global min

@ Proof for depth 2 with scaled identity init

Proposition

If at init W;.1(0) = « - I, for depth L =2 and 0 < o« < 1, then ((t) — 0
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Implicit Regularization Can Drive All Norms to Infinity

Convergence to Global Minimum

Customary

Separating aspects of convergence to global min and implicit regularization

/l\

commonly observed in practice

Convergence to Zero Loss (in our setting)

@ Experiments: GD consistently finds global min

@ Proof for depth 2 with scaled identity init

Proposition

If at init W;.1(0) = « - I, for depth L =2 and 0 < o« < 1, then ((t) — 0

Proof Approach

Careful analysis of GF differential equations
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Implicit Regularization Can Drive All Norms to Infinity

Robustness to Perturbations

What happens when observations are perturbed?
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Robustness to Perturbations

What happens when observations are perturbed?

* 1 * z non-zero z, 7'
10 = zZ € arbitrary ¢

Theorem (original setting)

If det(W,.1(0)) > O at init, then for any (quasi-)norm ||-||:
Q ([Wea(t)] =Q(1/v

@ rank-subopt(W;.1(t)) = (9( ((t))
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Robustness to Perturbations

What happens when observations are perturbed?

* 1 * z non-zero z, 7'
10 = zZ € arbitrary ¢

Theorem (original setting)
If sign(det(W/}.1(0))) = sign(1 - 1) at init, then for any (quasi-)norm ||-|:

Q [Wea(t)ll = Q(1/V/1(t))

@ rank-subopt(W;.1(t)) = O(/L(t))
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What happens when observations are perturbed?

* 1 * z non-zero z, 7'
10 = zZ € arbitrary ¢

Theorem (intermediate)

If sign(det(W}.1(0))) = sign(z - Z') at init, then for any (quasi-)norm ||-||:
@ [Wea(t)ll = Q(1/ v

@ rank-subopt(W,.1(t)) = (’)( ((t))
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10 = zZ € arbitrary ¢

Theorem (intermediate)

If sign(det(W,.1(0))) = sign(z - Z’) at init, then for any (quasi-)norm ||-||:
@ [Wea()ll = Q (min{|z], 1]} / (lel + v20(2)))
@ rank-subopt(Wy.1(t)) = O(\/L(t))
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10 = zZ € arbitrary ¢

If sign(det(W,.1(0))) = sign(z - Z’) at init, then for any (quasi-)norm ||-||:

@ [Wea()l = Q (min{|z], 1]} / (lel + v2(2)))

@ rank-subopt(W1(t)) = O ((|e| + v2(2)) / min{|z],|2|})

@ € = 0 = all norms driven to oo and rank is minimized
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Implicit Regularization Can Drive All Norms to Infinity

Robustness to Perturbations

What happens when observations are perturbed?

* 1 * z non-zero z, 7'
10 = zZ € arbitrary ¢

If sign(det(W,.1(0))) = sign(z - Z’) at init, then for any (quasi-)norm ||-||:

@ [Wea()l = Q (min{|z], 1]} / (lel + v2(2)))

@ rank-subopt(W1(t)) = O ((|e| + v2(2)) / min{|z],|2|})

@ € = 0 = all norms driven to oo and rank is minimized

@ Phenomenon gracefully recedes as ¢ perturbed from 0

Same results hold when changing unobserved entry location
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Implicit Regularization Can Drive All Norms to Infinity

Experiments: Unobserved Entry *

* 1 * =2
1 0 05 ¢
60 60
init 1e-3 £=0.5
VY init 1e-4 Ve=0.1
404 ®initle-5 404 #€e=0.05
— ¥ — €:=001
i i He=0
20 1 20
¥ »
V|
* =
0 e T : 0 - ——— :
107 1072 1073 107* 10° 107! 1072 1073 107*
loss loss
iterations iterations

Theory transfers to practice: unobserved entry — oo
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Implicit Regularization = Rank Minimization?

Outline

@ Implicit Regularization = Rank Minimization?
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o Implicit regularization drives norms to oo to minimize rank

Past Work

@ Empirical evidence: low-rank tendency in matrix factorization
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Analyzed Setting (our work)

@ Contrast between norm and rank minimization

o Implicit regularization drives norms to oo to minimize rank

Past Work

@ Empirical evidence: low-rank tendency in matrix factorization

@ Theoretical analysis: sparsity in singular values (Arora et al. 2019)

Better interpretation — rank minimization? ‘
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Implicit Regularization = Rank Minimization?

Implicit Regularization = Rank Minimization?

Analyzed Setting (our work)

@ Contrast between norm and rank minimization

o Implicit regularization drives norms to oo to minimize rank

Past Work

@ Empirical evidence: low-rank tendency in matrix factorization

@ Theoretical analysis: sparsity in singular values (Arora et al. 2019)

Better interpretation — rank minimization? ‘

Does this interpretation extend beyond matrix factorization?
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Implicit Regularization = Rank Minimization?

Tensor Factorization «+— Non-Linear Neural Network
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Implicit Regularization = Rank Minimization?

Tensor Factorization «+— Non-Linear Neural Network

Matrix Factorizations Linear Neural Networks

Wia|= | Wy |+eees| Wy [«| wy <:;>y<— W, [cooed Wy < Wy [x
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Implicit Regularization = Rank Minimization?

Tensor Factorization «+— Non-Linear Neural Network

Matrix Factorizations Linear Neural Networks
Wia|l=| Wy |seoesl wy [«| wy <:> Ve Wy |eeeed Wy [~ W; [<—x
Tensor Factorizations Convolutional Arithmetic Circuits
w® w® @ (Non-Linear Neural Networks)
% W(l) ?ﬂ W(l) WW W(l) sum
1 2 R H
R C—3 RC— input conv pool (output)
= + +oreed j C ANy i
w H H 2% I 3 fo]
w® @ @) \
1 R linear activation product pooling
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Implicit Regularization = Rank Minimization?

Tensor Factorization «+— Non-Linear Neural Network

Matrix Factorizations Linear Neural Networks
Wia|l=| Wy |seoesl wy [«| wy <:> Ve Wy |eeeed Wy [~ W; [<—x
Tensor Factorizations Convolutional Arithmetic Circuits
w® w® @ (Non-Linear Neural Networks)
% wid ?ﬂ Wi “’W wid sum
1 2 R H
R C—3 RC— input conv pool (output)
= + +oreed ANy i

W;Z) wéz) w‘(ZZ)

linear activation product pooling

ConvACs are competitive in practice, and admit algebraic structure

Extensively studied (e.g. Cohen et al. 2016, Cohen & Shashua 2016, Cohen & Shashua 2017)
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Implicit Regularization = Rank Minimization?

Tensor Factorization «+— Non-Linear Neural Network

Matrix Factorizations Linear Neural Networks
Wia|l=| Wy |seoesl wy [«| wy <:> Ve Wy |eeeed Wy [~ W; [<—x
Tensor Factorizations Convolutional Arithmetic Circuits
w® w® @ (Non-Linear Neural Networks)
% wid ?ﬂ Wi “’W wid sum
1 2 R
R C—3 RC— input conv pool (output)
= + +oreed VAR e

W;Z) wéz) w‘(ZZ)

linear activation product pooling

ConvACs are competitive in practice, and admit algebraic structure

Extensively studied (e.g. Cohen et al. 2016, Cohen & Shashua 2016, Cohen & Shashua 2017)

Tensor factorizations correspond to non-linear NN
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Implicit Regularization = Rank Minimization?

Tensor Completion

Tensor completion: recover low-rank tensor given subset of entries
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Natural extension of matrix completion
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Tensor — N-dimensional array (N = order of tensor)
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Implicit Regularization = Rank Minimization?

Tensor Completion

Tensor completion: recover low-rank tensor given subset of entries

Natural extension of matrix completion

Tensor Basics
Tensor — N-dimensional array (N = order of tensor)

Tensor rank — minimal R s.t. W = 25:1 wﬁl) R ® wﬁN)

® = outer product , wl) ¢ R%
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Implicit Regularization = Rank Minimization?

Tensor Completion

Tensor completion: recover low-rank tensor given subset of entries

Natural extension of matrix completion

Tensor Basics
Tensor — N-dimensional array (N = order of tensor)

Tensor rank — minimal R s.t. W = 25:1 wﬁl) R ® wﬁN)

® = outer product , wl) ¢ R%

For N = 2 this is exactly matrix rank
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Implicit Regularization = Rank Minimization?

From Matrix to Tensor Factorization

Noam Razin (TAU) Implicit Regularization in DL # Norms 27/31



Implicit Regularizatio Rank Minimization?

From Matrix to Tensor Factorization

Matrix Factorization
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w o= w, |[«| w,
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Implicit Regularization = Rank Minimization?

From Matrix to Tensor Factorization

Matrix Factorization

Wy rows
l‘Z w;l) wé” W:(rl)
QC— C—3 QC—3
w o |=| w, [«| w, <;> w =H +H +...+H
w:Z) w;n wl((l)
W, cols
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Implicit Regularization = Rank Minimization?

From Matrix to Tensor Factorization

Matrix Factorization

3) 3) 3)
i P P P
QC— C—3 QC—3

w = W, [«| W, |:> w = H + H P H
w:z) w;z) w;z)
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Implicit Regularization = Rank Minimization?

From Matrix to Tensor Factorization

Matrix Factorization Tensor Factorization
R w® w® w®
; A
R R RC—

w = W, [«| W, |:> w = H + H P H
w:z) w;z) w;z)
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Implicit Regularization = Rank Minimization?

From Matrix to Tensor Factorization

Matrix Factorization

R
1

Tensor Factorization

w |=| w,

Wy

C—

= [w =H H H
W:Z) w;z) w[({z)

Parameterize solution as tensor factorization:

Noam Razin (TAU)
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From Matrix to Tensor Factorization

Matrix Factorization Tensor Factorization
R w® w® w®
; D P P
R R RC—

w = W, [«| W, |:> w = H + |:| P H
w{z} w;z) w&z)

Parameterize solution as tensor factorization:

R
W= wd e owh
r=1

R taken large enough to not constrain rank

Does W converge to low-rank tensor when running GD w.r.t. {wﬁ")} ?
r,n

)
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Tensor Completion Experiments

reconstruction error

Order 4 Rank 1 Tensor Completion
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Tensor Completion Experiments

Order 4 Rank 1 Tensor Completion
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"linear" baseline — exactly fits observations, 0 elsewhere

GD drives rank of a non-linear NN towards minimum!

Noam Razin (TAU) Implicit Regularization in DL # Norms



Implicit Regularization = Rank Minimization?

Implicit Rank Minimization in Deep Learning?

Noam Razin (TAU) Implicit Regularization in DL # Norms



Implicit Regularization = Rank Minimization?

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations Linear Neural Networks

Wial=| Wy |seees] wy |« wy <:> Ve Wy fjeeree W, o W, fex

Theory & Experiments: implicit regularization minimizes matrix rank

Noam Razin (TAU) Implicit Regularization in DL # Norms



Implicit Regularization = Rank Minimization?

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations Linear Neural Networks

Wial=| Wy |seees] wy |« wy <:> Ve Wy fjeeree W, o W, fex

Theory & Experiments: implicit regularization minimizes matrix rank

Tensor Factorizations Convolutional Arithmetic Circuits
ﬂ ﬂ (Non-Linear Neural Networks)

R ] Qf ] R ]

-1 @ e

7 =17 ] te]

Noam Razin (TAU) Implicit Regularization in DL # Norms



Implicit Regularization = Rank Minimization?

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations Linear Neural Networks

Wial=| Wy |seees] wy |« wy <:;> Ve Wy fjeeree W, o W, fex

Theory & Experiments: implicit regularization minimizes matrix rank

Tensor Factorizations Convolutional Arithmetic Circuits
ﬂ ﬂ ﬂ (Non-Linear Neural Networks)

» =ﬂ] ﬂ H & ey L) 4

[ e 7

Experiments: implicit regularization minimizes tensor rank

Noam Razin (TAU) Implicit Regularization in DL # Norms



Implicit Regularization = Rank Minimization?

Implicit Rank Minimization in Deep Learning?

Matrix Factorizations Linear Neural Networks

Wial=| Wy |seees] wy |« wy <:;> Ve Wy fjeeree W, o W, fex

Theory & Experiments: implicit regularization minimizes matrix rank
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Experiments: implicit regularization minimizes tensor rank
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Implicit regularization in DL minimizes rank of input-output mapping
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Implicit Rank Minimization in Deep Learning?

Matrix Factorizations Linear Neural Networks

Wial=| Wy |seees] wy |« wy <:;> Ve Wy fjeeree W, o W, fex

Theory & Experiments: implicit regularization minimizes matrix rank

Tensor Factorizations Convolutional Arithmetic Circuits
ﬂ ﬂ ﬂ (Non-Linear Neural Networks)
R ] R ] =Y

w =ﬂ] +ﬂ +...+H & ={;%=

Experiments: implicit regularization minimizes tensor rank

Hypothesis
Implicit regularization in DL minimizes rank of input-output mapping

If true, may be key to explaining generalization
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Implicit Regularization # Norm Minimization

@ Matrix factorization: exist cases where all norms go to oo

@ Unlikely implicit regularization in DL = norm minimization

Better Interpretation: Bias to Low Rank?

@ Matrix factorization: growing empirical and theoretical evidence

@ Extends to certain type of non-linear NN

Looking Forward

Developing notions of rank for input-output mappings of NNs may be key

Thank You
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