On the Ability of Graph Neural Networks to Model Interactions Between Vertices

Noam Razin

Joint work with Tom Verbin & Naday Cohen

Tel Aviv University

Learning on Graphs and Geometry Reading Group

16 January 2023

Outline

- Expressivity in Graph Neural Networks (GNNs)
- Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

Neural networks purposed for modeling interactions over graph data

Neural networks purposed for modeling interactions over graph data

• Molecular data — graph prediction

Neural networks purposed for modeling interactions over graph data

• Molecular data — graph prediction

Social networks — vertex prediction

Neural networks purposed for modeling interactions over graph data

Molecular data — graph prediction

Social networks — vertex prediction

• Many more applications: recommender systems, ETA prediction,...

Challenge

Develop mathematical theory for GNNs

Challenge

Develop mathematical theory for GNNs

Fundamental Question

Expressivity: which functions can GNNs realize?

Challenge

Develop mathematical theory for GNNs

Fundamental Question

Expressivity: which functions can GNNs realize?

all functions over graphs

Challenge

Develop mathematical theory for GNNs

Fundamental Question

Expressivity: which functions can GNNs realize?

all functions over graphs
functions GNNs can realize

Challenge

Develop mathematical theory for GNNs

Fundamental Question

Expressivity: which functions can GNNs realize?

all functions over graphs

functions GNNs can realize

functions practically sized GNNs can realize

(1) Ability to distinguish non-isomorphic graphs

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019b, Geerts & Reutter 2022)

(1) Ability to distinguish non-isomorphic graphs

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019b, Geerts & Reutter 2022)

(2) Universality

(e.g. Maron et al. 2019a, Keriven & Peyré 2019, Chen et al. 2019, Azizian & Lelarge 2021)

(1) Ability to distinguish non-isomorphic graphs

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019b, Geerts & Reutter 2022)

(2) Universality

(e.g. Maron et al. 2019a, Keriven & Peyré 2019, Chen et al. 2019, Azizian & Lelarge 2021)

(3) Computability of graph properties: shortest paths, diameter,...

(e.g. Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020)

Despite progress in understanding expressivity of GNNs:

Despite progress in understanding expressivity of GNNs:

(1) Analyses often treat asymptotic regimes of unbounded width or depth

Despite progress in understanding expressivity of GNNs:

- (1) Analyses often treat asymptotic regimes of unbounded width or depth
- (2) Lack formalization for ability to model interactions between vertices

Despite progress in understanding expressivity of GNNs:

- (1) Analyses often treat asymptotic regimes of unbounded width or depth
- (2) Lack formalization for ability to model interactions between vertices

Question

How do graph structure and GNN architecture affect interactions?

Theory

Theory

Characterize ability of certain GNNs to model interactions between vertices

Theory

Characterize ability of certain GNNs to model interactions between vertices

formalized via separation rank

Theory

Characterize ability of certain GNNs to model interactions between vertices

formalized via separation rank

Practical Application

Theory

Characterize ability of certain GNNs to model interactions between vertices

formalized via separation rank

Practical Application

Use theory to derive an edge sparsification method preserving interactions

Theory

Characterize ability of certain GNNs to model interactions between vertices

formalized via separation rank

Practical Application

Use theory to derive an edge sparsification method preserving interactions

It is simple, efficient, and outperforms alternative methods

Outline

- Expressivity in Graph Neural Networks (GNNs)
- Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

Outline

- 1 Expressivity in Graph Neural Networks (GNNs)
- Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

Known measure for interaction modeled across partition of input variables

Known measure for interaction modeled across partition of input variables

Let $f:(\mathbb{R}^D)^N \to \mathbb{R}$ and subset of variables $\mathcal{I}\subseteq [N]$

Known measure for interaction modeled across partition of input variables

Let $f:(\mathbb{R}^D)^N \to \mathbb{R}$ and subset of variables $\mathcal{I}\subseteq [N]$

$$f\left(\underbrace{\boxed{\boxed{\underbrace{X_{\mathcal{I}}} \cdots \boxed{\boxed{\boxed{\boxed{\boxed{1}}}}}}_{X_{\mathcal{I}^c}}\right)$$

$$\operatorname{sep}(f;\mathcal{I}) := \min \ R \ \mathrm{s.t.} \ f(X) = \sum_{r=1}^R g_r(X_{\mathcal{I}}) \cdot \bar{g}_r(X_{\mathcal{I}^c})$$

Known measure for interaction modeled across partition of input variables

Let $f:(\mathbb{R}^D)^N \to \mathbb{R}$ and subset of variables $\mathcal{I}\subseteq [N]$

$$f\left(\underbrace{\boxed{\boxed{\boxed{\cdots}}}_{X_{\mathcal{I}}}\underbrace{\cdots}\underbrace{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\top}}}}}_{X_{\mathcal{I}^c}}}\right)$$

$$\operatorname{sep}(f;\mathcal{I}) := \min R \text{ s.t. } f(X) = \sum_{r=1}^R g_r(X_{\mathcal{I}}) \cdot \bar{g}_r(X_{\mathcal{I}^c})$$

Higher $\operatorname{sep}(f;\mathcal{I}) \implies$ stronger interaction between $X_{\mathcal{I}}$ and $X_{\mathcal{I}^c}$

Usages of Separation Rank

Usages of Separation Rank

Measure of entanglement in quantum mechanics

Usages of Separation Rank

Measure of entanglement in quantum mechanics

Analyses of convolutional, recurrent, and self-attention NNs

(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, R et al. 2022)

Outline

- 1 Expressivity in Graph Neural Networks (GNNs)
- Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

Inputs: graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, vertex features $X = (x^{(1)}, \dots, x^{(|\mathcal{V}|)})$

$$\underline{\mathsf{Inputs}} \text{: graph } \mathcal{G} = (\mathcal{V}, \mathcal{E}) \ \ \text{, vertex features } X = (x^{(1)}, \dots, x^{(|\mathcal{V}|)})$$

Inputs: graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, vertex features $X = (x^{(1)}, \dots, x^{(|\mathcal{V}|)})$

$$\underline{\mathsf{Inputs}} \text{: graph } \mathcal{G} = (\mathcal{V}, \mathcal{E}) \ \ \text{, vertex features } X = (x^{(1)}, \dots, x^{(|\mathcal{V}|)})$$

Initialize: $h^{(0,i)} := x^{(i)}$ for $i \in \mathcal{V}$

Inputs: graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 , vertex features $X = (x^{(1)}, \dots, x^{(|\mathcal{V}|)})$

Initialize: $h^{(0,i)} := x^{(i)}$ for $i \in \mathcal{V}$

<u>Common update rule</u>: at layer I = 1, 2, ..., L for i ∈ V

Inputs: graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 , vertex features $X = (x^{(1)}, \dots, x^{(|\mathcal{V}|)})$

Initialize: $h^{(0,i)} := x^{(i)}$ for $i \in \mathcal{V}$

Common update rule: at layer l = 1, 2, ..., L for $i \in V$

$$\boldsymbol{h}^{(l,i)} = \mathrm{AGG}\left(\left\{W^{(l)}\boldsymbol{h}^{(l-1,j)}: j \in \mathrm{neighbors}(i)\right\}\right)$$

After L layers the GNN produces $h^{(L,1)}, \ldots, h^{(L,|\mathcal{V}|)}$

After L layers the GNN produces $h^{(L,1)}, \ldots, h^{(L,|\mathcal{V}|)}$

Graph prediction: single output for the whole graph

After L layers the GNN produces $h^{(L,1)}, \ldots, h^{(L,|\mathcal{V}|)}$

Graph prediction: single output for the whole graph

$$GNN(X) = W^{(o)}AGG(h^{(L,1)}, \dots, h^{(L,|\mathcal{V}|)})$$

After L layers the GNN produces $h^{(L,1)}, \ldots, h^{(L,|\mathcal{V}|)}$

Graph prediction: single output for the whole graph

$$GNN(X) = W^{(o)}AGG(h^{(L,1)}, \dots, h^{(L,|\mathcal{V}|)})$$

Vertex prediction: output for every $t \in \mathcal{V}$

After L layers the GNN produces $h^{(L,1)}, \ldots, h^{(L,|\mathcal{V}|)}$

Graph prediction: single output for the whole graph

$$GNN(X) = W^{(o)} \operatorname{AGG}(h^{(L,1)}, \dots, h^{(L,|\mathcal{V}|)})$$

Vertex prediction: output for every $t \in \mathcal{V}$

$$GNN^{(t)}(X) = W^{(o)}h^{(L,t)}$$

Our aim: investigate ability of GNNs to model interactions

Our aim: investigate ability of GNNs to model interactions

<u>Prior work</u>: study interactions for other NNs w/ polynomial non-linearity (e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

Our aim: investigate ability of GNNs to model interactions

<u>Prior work</u>: study interactions for other NNs w/ polynomial non-linearity (e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

Our aim: investigate ability of GNNs to model interactions

<u>Prior work</u>: study interactions for other NNs w/ polynomial non-linearity (e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

Why analyze NNs w/ polynomial non-linearity?

Our aim: investigate ability of GNNs to model interactions

<u>Prior work</u>: study interactions for other NNs w/ polynomial non-linearity (e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

Why analyze NNs w/ polynomial non-linearity?

• Competitive empirical performance (e.g. Chrysos et al. 2020, Hua et al. 2022)

Our aim: investigate ability of GNNs to model interactions

<u>Prior work</u>: study interactions for other NNs w/ polynomial non-linearity (e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

Why analyze NNs w/ polynomial non-linearity?

- Competitive empirical performance (e.g. Chrysos et al. 2020, Hua et al. 2022)
- Compatible with quantum computing (e.g. Grant et al. 2018, Bhatia et al. 2019)

Our aim: investigate ability of GNNs to model interactions

<u>Prior work</u>: study interactions for other NNs w/ polynomial non-linearity (e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

Why analyze NNs w/ polynomial non-linearity?

- Competitive empirical performance (e.g. Chrysos et al. 2020, Hua et al. 2022)
- Compatible with quantum computing (e.g. Grant et al. 2018, Bhatia et al. 2019)
- Insights and practical tools for more common models

We theoretically study GNNs with product aggregation (polynomial in X)

We theoretically study GNNs with product aggregation (polynomial in X)

$$h^{(l,i)} = \operatorname{AGG}\left(\left\{W^{(l)}h^{(l-1,j)}: j \in \operatorname{neighbors}(i)\right\}\right)$$

We theoretically study GNNs with product aggregation (polynomial in X)

$$h^{(l,i)} = PROD\left(\left\{W^{(l)}h^{(l-1,j)}: j \in \text{neighbors}(i)\right\}\right)$$

We theoretically study GNNs with product aggregation (polynomial in X)

$$h^{(l,i)} = \text{PROD}\left(\left\{W^{(l)}h^{(l-1,j)}: j \in \text{neighbors}(i)\right\}\right)$$

GNNs w/ product aggregation

Tensor networks

We theoretically study GNNs with product aggregation (polynomial in X)

$$h^{(l,i)} = \text{PROD}\left(\left\{W^{(l)}h^{(l-1,j)}: j \in \text{neighbors}(i)\right\}\right)$$

GNNs w/ product aggregation

Tensor networks

Variant of the competitive Tensorized GNN (Hua et al. 2022)

We theoretically study GNNs with product aggregation (polynomial in X)

$$h^{(l,i)} = \text{PROD}\left(\left\{W^{(l)}h^{(l-1,j)}: j \in \text{neighbors}(i)\right\}\right)$$

GNNs w/ product aggregation

Tensor networks

- Variant of the competitive Tensorized GNN (Hua et al. 2022)
- Demonstrate findings empirically on GNNs with ReLU non-linearity

We theoretically study GNNs with product aggregation (polynomial in X)

$$h^{(l,i)} = \text{PROD}\left(\left\{W^{(l)}h^{(l-1,j)}: j \in \text{neighbors}(i)\right\}\right)$$

GNNs w/ product aggregation

Tensor networks

- Variant of the competitive Tensorized GNN (Hua et al. 2022)
- Demonstrate findings empirically on GNNs with ReLU non-linearity
- Based on theory: derive an edge sparsification algorithm

Outline

- 1 Expressivity in Graph Neural Networks (GNNs)
 - Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

L — GNN depth

L — GNN depth

 $\mathcal{C}_{\mathcal{I}}$ — partition boundary

Graph prediction:

$$\mathrm{WI}_{L-1}(\mathcal{I}) := \# \ \mathsf{length} \ L-1 \ \mathsf{walks} \ \mathsf{from} \ \mathcal{C}_{\mathcal{I}}$$

L — GNN depth

 $\mathcal{C}_{\mathcal{I}}$ — partition boundary

Graph prediction:

$$\mathrm{WI}_{L-1}(\mathcal{I}) := \# \ \mathsf{length} \ L-1 \ \mathsf{walks} \ \mathsf{from} \ \mathcal{C}_{\mathcal{I}}$$

Vertex prediction:

$$\mathrm{WI}_{L-1,t}(\mathcal{I}) := \# \ \mathsf{length} \ L-1 \ \mathsf{walks} \ \mathsf{from} \ \mathcal{C}_{\mathcal{I}} \ \mathsf{to} \ t \in \mathcal{V}$$

Main Result: Strength of Interaction \propto Walk Index

Theorem

For a depth L GNN with width D_h and $\mathcal{I} \subseteq \mathcal{V}$:

Theorem

For a depth L GNN with width D_h and $\mathcal{I} \subseteq \mathcal{V}$:

(graph prediction)
$$\operatorname{sep}(\mathit{GNN};\mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

Theorem

For a depth L GNN with width D_h and $\mathcal{I} \subseteq \mathcal{V}$:

(graph prediction)
$$\operatorname{sep}(GNN; \mathcal{I}) = D_h^{\mathcal{O}(\operatorname{WI}_{L-1}(\mathcal{I}))}$$

(vertex prediction)
$$\operatorname{sep}(GNN^{(t)}; \mathcal{I}) = D_h^{\mathcal{O}(\operatorname{WI}_{L-1,t}(\mathcal{I}))}$$

Theorem

For a depth L GNN with width D_h and $\mathcal{I} \subseteq \mathcal{V}$:

(graph prediction)
$$\operatorname{sep}(GNN; \mathcal{I}) = D_h^{\mathcal{O}(\operatorname{WI}_{L-1}(\mathcal{I}))}$$

(vertex prediction)
$$\operatorname{sep}(GNN^{(t)}; \mathcal{I}) = D_h^{\mathcal{O}(\operatorname{WI}_{L-1,t}(\mathcal{I}))}$$

* Nearly matching lower bounds

Theorem

For a depth L GNN with width D_h and $\mathcal{I} \subseteq \mathcal{V}$:

(graph prediction)
$$\operatorname{sep}(GNN; \mathcal{I}) = D_h^{\mathcal{O}(\operatorname{WI}_{L-1}(\mathcal{I}))}$$

(vertex prediction)
$$\operatorname{sep}(GNN^{(t)}; \mathcal{I}) = D_h^{\mathcal{O}(\operatorname{WI}_{L-1,t}(\mathcal{I}))}$$

* Nearly matching lower bounds

Strength of interaction modeled across partition of vertices is determined by its walk index

Theorem

$$(\textit{graph prediction}) \ \operatorname{sep}(\textit{GNN}; \mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

Theorem

(graph prediction)
$$\operatorname{sep}(\mathit{GNN};\mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

GNN w/ product aggregation can be represented as tensor network

Theorem

(graph prediction)
$$\operatorname{sep}(\mathit{GNN};\mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

GNN w/ product aggregation can be represented as tensor network

Theorem

(graph prediction)
$$\operatorname{sep}(\mathit{GNN};\mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

GNN w/ product aggregation can be represented as tensor network

Theorem

(graph prediction)
$$\operatorname{sep}(\mathit{GNN};\mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

GNN w/ product aggregation can be represented as tensor network

GNN layers

Vertex features $x^{(1)}, \dots, x^{(|\mathcal{V}|)}$

Theorem

$$(\textit{graph prediction}) \quad \mathrm{sep}(\textit{GNN}; \mathcal{I}) = D_h^{\mathcal{O}\left(\mathrm{WI}_{L-1}(\mathcal{I})\right)}$$

GNN w/ product aggregation can be represented as tensor network

Vertex features $x^{(1)}, \dots, x^{(|\mathcal{V}|)}$

 $sep(GNN; \mathcal{I})$ upper bounded by min cut in tensor network

Theorem

(graph prediction)
$$\operatorname{sep}(\mathit{GNN};\mathcal{I}) = D_h^{\mathcal{O}\left(\operatorname{WI}_{L-1}(\mathcal{I})\right)}$$

GNN w/ product aggregation can be represented as tensor network

Vertex features $x^{(1)}, ..., x^{(|\mathcal{V}|)}$

 $sep(\textit{GNN}; \mathcal{I})$ upper bounded by min cut in tensor network

separating leaves in ${\mathcal I}$ from leaves in ${\mathcal I}^c$

low walk index

high walk index

low walk index

low separation rank

high walk index

high separation rank

low walk index

low separation rank

high walk index

high separation rank

GNNs can model stronger interactions across partitions with higher walk index

low separation rank

high walk index

high separation rank

GNNs can model stronger interactions across partitions with higher walk index

<u>Formalizes intuition</u>: more interconnected ⇒ stronger interaction

Theory Suggests

Theory Suggests

GNNs perform better on datasets requiring strong interactions across higher walk index partitions

Theory Suggests

GNNs perform better on datasets requiring strong interactions across higher walk index partitions

Experiment

Theory Suggests

GNNs perform better on datasets requiring strong interactions across higher walk index partitions

Experiment

GNNs w/ ReLU non-linearity on low vs high walk index datasets

Theory Suggests

GNNs perform better on datasets requiring strong interactions across higher walk index partitions

Experiment

GNNs w/ ReLU non-linearity on low vs high walk index datasets

<u>Task</u> (graph prediction): predict if two FMNIST images have same class

Theory Suggests

GNNs perform better on datasets requiring strong interactions across higher walk index partitions

Experiment

GNNs w/ ReLU non-linearity on low vs high walk index datasets

<u>Task</u> (graph prediction): predict if two FMNIST images have same class

Theory Suggests

GNNs perform better on datasets requiring strong interactions across higher walk index partitions

Experiment

GNNs w/ ReLU non-linearity on low vs high walk index datasets

Task (graph prediction): predict if two FMNIST images have same class

Experiment Results

Experiment Results

		Partition Walk Index	
		Low	High
GCN	Train Test	70.4 ± 1.7 52.7 ± 1.9	81.4 ± 2.0 66.2 ± 1.1
GAT	Train Test	82.8 ± 2.6 69.6 ± 0.6	88.5 ± 1.1 72.1 ± 1.2
GIN	Train Test	83.2 ± 0.8 53.7 ± 1.8	$egin{array}{c} {\bf 94.2} \pm 0.8 \ {\bf 64.8} \pm 1.4 \end{array}$

Experiment Results

		Partition Walk Index	
		Low	High
GCN	Train Test	70.4 ± 1.7 52.7 ± 1.9	81.4 ± 2.0 66.2 ± 1.1
GAT	Train Test	82.8 ± 2.6 69.6 ± 0.6	88.5 ± 1.1 72.1 ± 1.2
GIN	Train Test	83.2 ± 0.8 53.7 ± 1.8	94.2 ± 0.8 64.8 ± 1.4

In accordance with our theory:

GNNs perform better on tasks entailing strong interactions across partitions with higher walk index

Outline

- 1 Expressivity in Graph Neural Networks (GNNs)
- Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

Computations over large-scale graphs are expensive

Computations over large-scale graphs are expensive

Edge sparsification: removing edges while maintaining graph properties

(e.g. Baswana & Sen 2007, Spielman & Srivastava 2011, Hamann et al. 2016)

Computations over large-scale graphs are expensive

Edge sparsification: removing edges while maintaining graph properties (e.g. Baswana & Sen 2007, Spielman & Srivastava 2011, Hamann et al. 2016)

GNNs perspective: maintain accuracy when removing edges (e.g. Li et al. 2020, Chen et al. 2021)

Computations over large-scale graphs are expensive

Edge sparsification: removing edges while maintaining graph properties (e.g. Baswana & Sen 2007, Spielman & Srivastava 2011, Hamann et al. 2016)

GNNs perspective: maintain accuracy when removing edges (e.g. Li et al. 2020, Chen et al. 2021)

Our theory \implies simple & effective recipe for pruning edges

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions $\mathcal{I}_1, \dots, \mathcal{I}_M$ to preserve modeled interactions for

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\ldots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

$$s_2 = WI_{L-1}(\mathcal{I}_1), WI_{L-1}(\mathcal{I}_2)$$

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

$$s_1, s_2, \dots, s_8$$

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

$$s_1, s_2, \dots, s_8$$

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal
- (3) Remove edge with maximal walk index tuple

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

 s_1, s_2, \dots, s_8

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal
- (3) Remove edge with maximal walk index tuple

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction across $\mathcal{I}, \mathcal{I}^c$

Idea: greedily prune edge whose removal harms interactions the least

- (1) Choose partitions $\mathcal{I}_1,\dots,\mathcal{I}_M$ to preserve modeled interactions for
- (2) Per edge, compute (L-1)-walk indices of $\mathcal{I}_1,\dots,\mathcal{I}_M$ after its removal
- (3) Remove edge with maximal walk index tuple

We focus on vertex prediction (most relevant in large graphs)

We focus on vertex prediction (most relevant in large graphs)

(L-1)-Walk Index Sparsification (WIS)

We focus on vertex prediction (most relevant in large graphs)

(L-1)-Walk Index Sparsification (WIS)

Choose partitions separating a vertex from all others

We focus on vertex prediction (most relevant in large graphs)

(L-1)-Walk Index Sparsification (WIS)

Choose partitions separating a vertex from all others

• Order tuples by minimal entry, breaking ties using second smallest,...

Particularly simple & efficient implementation

Particularly simple & efficient implementation

Particularly simple & efficient implementation

Algorithm: until desired # edges are removed:

(1) Compute vertex degrees

Particularly simple & efficient implementation

- (1) Compute vertex degrees
- (2) Remove edge $\{i, j\}$ with maximal min $\{\deg(i), \deg(j)\}$

Particularly simple & efficient implementation

- (1) Compute vertex degrees
- (2) Remove edge $\{i, j\}$ with maximal min $\{\deg(i), \deg(j)\}$ (break ties via max $\{\deg(i), \deg(j)\}$)

Experiment

Compare edge sparsification methods over standard benchmarks

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011),

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN)

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN)

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN)

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN)

WIS outperforms existing methods while being simple & efficient

Experiment

Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN)

WIS outperforms existing methods while being simple & efficient

Code: https://github.com/noamrazin/gnn_interactions

Outline

- 1 Expressivity in Graph Neural Networks (GNNs)
 - Theory: Quantifying Ability of GNNs to Model Interactions
 - Formalizing Interaction via Separation Rank
 - Analyzed GNN Architecture
 - Characterizing Strength of Modeled Interaction
- 3 Application: Expressivity Preserving Edge Sparsification
- 4 Conclusion

Theoretical Analysis

Theoretical Analysis

• Characterized ability of certain GNNs to model interactions

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

• Derived WIS: an edge sparsification algorithm preserving interactions

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

- Derived WIS: an edge sparsification algorithm preserving interactions
- WIS is simple, efficient, and outperforms alternative methods

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

- Derived WIS: an edge sparsification algorithm preserving interactions
- WIS is simple, efficient, and outperforms alternative methods

Going Forward

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

- Derived WIS: an edge sparsification algorithm preserving interactions
- WIS is simple, efficient, and outperforms alternative methods

Going Forward

Studying modeled interactions may be key for:

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

- Derived WIS: an edge sparsification algorithm preserving interactions
- WIS is simple, efficient, and outperforms alternative methods

Going Forward

Studying modeled interactions may be key for:

• Understanding aspects beyond expressivity: e.g. generalization

Theoretical Analysis

- Characterized ability of certain GNNs to model interactions
- Walk index of a partition controls strength of interaction

Practical Application

- Derived WIS: an edge sparsification algorithm preserving interactions
- WIS is simple, efficient, and outperforms alternative methods

Going Forward

Studying modeled interactions may be key for:

- Understanding aspects beyond expressivity: e.g. generalization
- Improving performance of GNNs

Thank You!

Work supported by:

Apple Scholars in AI/ML PhD fellowship, Google Research Scholar Award, Google Research Gift, the Yandex Initiative in Machine Learning, the Israel Science Foundation (grant 1780/21), Len Blavatnik and the Blavatnik Family Foundation, Tel Aviv University Center for AI and Data Science, and Amnon and Anat Shashua.