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Graph Neural Networks (GNNs)

Neural networks purposed for modeling interactions over graph data

Molecular data — graph prediction

Social networks — vertex prediction

Many more applications: recommender systems, ETA prediction,...
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Mathematical Theory of GNNs

Challenge
Develop mathematical theory for GNNs

Fundamental Question
Expressivity: which functions can GNNs realize?
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Existing Analyses of Expressivity

(1) Ability to distinguish non-isomorphic graphs
(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019b, Geerts & Reutter 2022)

(2) Universality
(e.g. Maron et al. 2019a, Keriven & Peyré 2019, Chen et al. 2019, Azizian & Lelarge 2021)

(3) Computability of graph properties: shortest paths, diameter,...
(e.g. Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020)
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Limitations of Existing Analyses

Despite progress in understanding expressivity of GNNs:

(1) Analyses often treat asymptotic regimes of unbounded width or depth

(2) Lack formalization for ability to model interactions between vertices

Question

How do graph structure and GNN architecture affect interactions?
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Promo: Our Contributions

Theory
Characterize ability of certain GNNs to model interactions between vertices

↑
formalized via separation rank

Practical Application
Use theory to derive an edge sparsification method preserving interactions

It is simple, efficient, and outperforms alternative methods
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Separation Rank

Known measure for interaction modeled across partition of input variables

Let f : (RD)N → R and subset of variables I ⊆ [N]

𝑓 ( )

sep(f ; I) := min R s.t. f (X ) =
∑R

r=1 gr (XI) · ḡr (XIc )

Higher sep(f ; I) =⇒ stronger interaction between XI and XIc
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Usages of Separation Rank

Measure of entanglement in quantum mechanics

Analyses of convolutional, recurrent, and self-attention NNs
(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, R et al. 2022)
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Message-Passing GNNs

Inputs: graph G = (V, E) , vertex features X = (x (1), . . . , x (|V|))

Initialize: h(0,i) := x (i) for i ∈ V

Common update rule: at layer l = 1, 2, . . . , L for i ∈ V

h(l ,i) = agg
({

W (l)h(l−1,j) : j ∈ neighbors(i)
})
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GNNs for Vertex vs Graph Prediction

After L layers the GNN produces h(L,1), . . . , h(L,|V|)

Graph prediction: single output for the whole graph

Vertex prediction: output for every t ∈ V
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Studying Modeled Interactions via Tensor Networks

Our aim: investigate ability of GNNs to model interactions

Prior work: study interactions for other NNs w/ polynomial non-linearity
(e.g. Cohen et al. 2016, Khrulkov et al. 2018, Levine et al. 2020, R et al. 2021;2022)

NNs w/ polynomial non-linearity Tensor networks

Why analyze NNs w/ polynomial non-linearity?

Competitive empirical performance (e.g. Chrysos et al. 2020, Hua et al. 2022)

Compatible with quantum computing (e.g. Grant et al. 2018, Bhatia et al. 2019)

Insights and practical tools for more common models
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Walk Index (WI) of a Partition of Vertices
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Graph prediction:
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Main Result — Proof Sketch

Theorem

(graph prediction) sep(GNN; I) = DO(WIL−1(I))
h

GNN w/ product aggregation can be represented as tensor networksep(GNN; I) upper bounded by min cut in tensor network
↑

separating leaves in I from leaves in Ic
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Implication of Main Result

GNNs can model stronger interactions across
partitions with higher walk index

Formalizes intuition: more interconnected =⇒ stronger interaction
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Empirical Demonstration on GNNs with ReLU

Theory Suggests

GNNs perform better on datasets requiring strong interactions across
higher walk index partitions

Experiment
GNNs w/ ReLU non-linearity on low vs high walk index datasets

Task (graph prediction): predict if two FMNIST images have same class
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Empirical Demonstration on GNNs with ReLU

Experiment Results

In accordance with our theory:

GNNs perform better on tasks entailing strong
interactions across partitions with higher walk index
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Edge Sparsification

Computations over large-scale graphs are expensive

Edge sparsification: removing edges while maintaining graph properties
(e.g. Baswana & Sen 2007, Spielman & Srivastava 2011, Hamann et al. 2016)

GNNs perspective: maintain accuracy when removing edges
(e.g. Li et al. 2020, Chen et al. 2021)

Our theory =⇒ simple & effective recipe for pruning edges
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General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the leastAlgorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑠! =

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑊𝐼!"#( )𝑠! =

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑊𝐼!"#( ),𝑊𝐼!"#( )𝑠! =

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑠! =

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑠! = 𝑊𝐼!"#( )

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑊𝐼!"#( ),𝑊𝐼!"#( )𝑠! =

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑠!, 𝑠", … , 𝑠#

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑠!, 𝑠", … , 𝑠#

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

𝑠!, 𝑠", … , 𝑠#

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



General Walk Index Sparsification Scheme

Theory: walk index of I ⊆ V key for modeling interaction across I, Ic

Idea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

(1) Choose partitions I1, . . . , IM to preserve modeled interactions for

(2) Per edge, compute (L− 1)-walk indices of I1, . . . , IM after its removal

(3) Remove edge with maximal walk index tuple

Noam Razin (TAU) Ability of GNNs to Model Interactions 26 / 32



Walk Index Sparsification (WIS)

We focus on vertex prediction (most relevant in large graphs)

(L− 1)-Walk Index Sparsification (WIS)

Choose partitions separating a vertex from all others

Order tuples by minimal entry, breaking ties using second smallest,...
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1-Walk Index Sparsification (1-WIS)

Particularly simple & efficient implementation

Algorithm: until desired # edges are removed:

(1) Compute vertex degrees

(2) Remove edge {i , j} with maximal min{deg(i), deg(j)}

(break ties via max{deg(i), deg(j)})
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Comparison of Edge Sparsification Methods
Experiment
Compare edge sparsification methods over standard benchmarks

Baselines: random, spectral (Spielman & Srivastava 2011), UGS (Chen et al. 2021)

Model: depth L = 3 GCN (similar results using GIN)

WIS outperforms existing methods while being simple & efficient

Code: https://github.com/noamrazin/gnn_interactions
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Conclusion

Theoretical Analysis

Characterized ability of certain GNNs to model interactions

Walk index of a partition controls strength of interaction

Practical Application

Derived WIS: an edge sparsification algorithm preserving interactions

WIS is simple, efficient, and outperforms alternative methods

Going Forward
Studying modeled interactions may be key for:

Understanding aspects beyond expressivity: e.g. generalization

Improving performance of GNNs
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