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Implicit Regularization in Deep Learning

Generalization via Bias-Variance Tradeoff
Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

Limiting model size

Adding regularization (e.g. `2 penalty)
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Implicit Regularization in Deep Learning

Generalization in Deep Learning
Neural networks (NNs) generalize with no explicit regularization despite:

≫ # of  
training examples 

# of  
learned weights 

Conventional Wisdom
Gradient descent (GD) induces implicit regularization towards “simplicity”

GD

Goal
Mathematically characterize this implicit regularization
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Implicit Regularization in Deep Learning

Linear Models: Implicit Norm Minimization
Linear Regression

When # of learned weights > # of training examples:

GD initialized at 0 converges to min `2 norm solution

argmin
w
‖w‖2 s.t. w is global min
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Implicit Regularization in Deep Learning

Implicit Norm Minimization In Deep Learning?
Widespread Hope
In deep learning, GD finds solution with min norm (possibly not `2)

argmin
w
‖w‖ s.t. w is global min

Demonstrated in various settings, e.g.:

Neyshabur et al. 2015
Gunasekar et al. 2017
Soudry et al. 2018
Gunasekar et al. 2018a
Gunasekar et al. 2018b
Li et al. 2018
Jacot et al. 2018
Ji & Telgarsky 2019a
Ji & Telgarsky 2019b

Wu et al. 2019
Oymak & Soltanolkotabi 2019
Nacson et al. 2019a
Nacson et al. 2019b
Woodworth et al. 2020
Lyu & Li 2020
Ali et al. 2020
Chizat & Bach 2020
Lyu et al. 2021
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Implicit Regularization in Deep Learning

Perspective: Implicit Rank Minimization
Perspective
To understand implicit regularization in deep learning:

Language of standard norm regularizers might not suffice

Notions of rank may be key

Case will be made via matrix and tensor factorizations

* * * 
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Matrix Factorization

Outline
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Matrix Factorization

Matrix Completion ←→ Two-Dimensional Prediction
Matrix completion: recover unknown matrix given subset of entries

observations 𝑦!,# !,# ∈%

d × d ′ matrix completion ←→ prediction from {1, ..., d} × {1, ..., d ′} to R

value of entry (i , j) ←→ label of input (i , j)

observed entries ←→ train data

unobserved entries ←→ test data

matrix ←→ predictor
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Matrix Factorization

MF ←→ Linear NN
Matrix Factorization (MF):
Parameterize solution as product of matrices and fit observations via GD

minW1,...,WL

∑
(i , j)∈Ω

(
[WLWL−1 · · ·W1]i ,j − yi ,j

)2

↑
hidden dimensions large enough to not limit rank

𝑾𝑳 𝑾𝟐 𝑾𝟏* * * 

Linear NN

𝑾𝟏 𝑾𝟐 𝑾𝑳𝒙 𝒚

MF

Empirical Phenomenon (Gunasekar et al. 2017)
MF (with small init and step size) accurately recovers low rank matrices
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Matrix Factorization

Conjecture: Nuclear Norm Minimization

Classic Result (Candes & Recht 2009)
For low rank ground truth:

min ‖W ‖nuclear s.t. [W ]i ,j = yi ,j ∀(i , j) ∈ Ω

perfectly recovers under certain technical conditions

Conjecture (Gunasekar et al. 2017)
Training MF via gradient flow (GD with step size → 0) with small init
=⇒ min nuclear norm solution

Proven in certain restricted cases (Gunasekar et al. 2017, Li et al. 2018, Belabbas 2020)
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Matrix Factorization

Conjecture: No Norm is Minimized

We := WL · · ·W1 — end matrix
{
σ

(r)
M

}
r
— singular values of We

Theorem (Arora et al. 2019)

When training MF with near-zero init: d
dtσ

(r)
M (t)∝σ(r)

M (t)2− 2
L

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF

Incremental learning of
singular values leads to

low rank

Conjecture (Arora et al. 2019)
For any ‖·‖, exist observations for which MF 6=⇒ min ‖·‖ solution
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Matrix Factorization Implicit Regularization 6= Norm Minimization

Our Work: Implicit Regularization 6= Norm Minimization

Does the implicit regularization in MF minimize a norm?

Theorem
There exist matrix completion settings where MF drives all norms to ∞
while effective rank is minimized

Implicit regularization in MF6= norm minimization

Experiment

Chou et al. 2020, Li et al. 2021: further support for implicit rank minimization
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Tensor Factorization

Drawbacks of Studying MF

As a surrogate for deep learning, MF is limited:

(1) Misses non-linearity

(2) Does not capture prediction with more than 2 input variables

Tensor factorization accounts for both (1) and (2)
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Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor

Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor

Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor

Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor

Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor

Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor

Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction
Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor
Noam Razin (TAU) Generalization in DL via Rank Lowering 18 / 34



Tensor Factorization

TF ←→ Shallow Non-Linear Convolutional NN
Tensor Factorization (TF):
Parameterize solution as sum of outer products and fit observations via GD

min{wn
r }r,n

∑
(i1,...,iN )∈Ω

([∑R
r=1w1

r ⊗ · · · ⊗wN
r
]
i1,...,iN

− yi1,...,iN
)2

↑
R large enough to not constrain rank

Tensor rank: min # of components (R) required to express a tensor

TF Shallow Non-Linear 
Convolutional NN (CNN)

input conv

pool output

Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)
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Tensor Factorization

Dynamical Analysis of Implicit Regularization in TF
σ

(r)
T := ‖⊗N

n=1wn
r ‖F — Frobenius norm of r ’th component

Theorem
When training TF with near-zero init: d

dtσ
(r)
T (t)∝σ(r)

T (t)2− 2
N

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF

Incremental learning of
components leads to

low tensor rank!

Theorem (under technical conditions)
If tensor completion has tensor rank 1 solution, then TF will reach it
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Tensor Factorization

Analogy Between Implicit Regularizations

MF TF

Dynamics

Experiment

Incremental 
learning lowers

rank tensor rank

Quantity singular values component norms

Implicit regularizations in MF and TF have identical structure!
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Hierarchical Tensor Factorization

Outline

1 Implicit Regularization in Deep Learning

2 Matrix Factorization
Implicit Regularization 6= Norm Minimization

3 Tensor Factorization

4 Hierarchical Tensor Factorization
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Hierarchical Tensor Factorization

HTF ←→ Deep Non-Linear CNN
TF does not account for depth

TF
(sum of components)

Shallow Non-Linear CNN
input conv

pool output

Hierarchical Tensor Factorization (HTF):Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)

Representation w/ few local components =⇒ low hierarchical tensor rank
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Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF
σ

(r)
H — Frobenius norm of r ’th local component in a location of HTF

K — order of local component

Theorem
When training HTF with near-zero init: d

dtσ
(r)
H (t)∝σ(r)

H (t)2− 2
K

Local component norms move slower when small and faster when large!

Experiment: completion of low hierarchical tensor rank tensor via HTF

Incremental learning of local
components leads to low
hierarchical tensor rank!
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Hierarchical Tensor Factorization

Analogy Between Implicit Regularizations

MF TF

Dynamics

Experiment

Incremental 
learning lowers

hierarchical tensor rankrank tensor rank

HTF

Quantity singular values component norms local component norms

Implicit regularizations in MF, TF and HTF have identical structure!
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Implications for Modern Deep Learning

Practical Application: Rank Lowering in NN Layers

Parameterize layers of NN as MF / TF / HTF

=⇒ implicit rank lowering induces compressibility and generalization
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Implications for Modern Deep Learning

Potential Explanation for Generalization on Natural Data

Challenge
Find complexity measures that:

Are implicitly lowered by GD over NNs

Capture essence of natural data (allow its fit with low complexity)

Can ranks serve as measures of complexity?

Experiment
MNIST & FMNIST can be fit with low (hierarchical) tensor rank

Implicit lowering of ranks may
explain generalization on natural data!
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Implications for Modern Deep Learning

Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)
Hierarchical tensor rank measures long-range dependencies

Local dependencies

Long-range dependencies

Implicit lowering of
hierarchical tensor rank in HTF

m
Implicit lowering of

long-range dependencies in CNNs!

CNNs are not suitable for long-range tasks
Conventional wisdom: due to expressiveness

(Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)

Our analysis: implicit regularization is also a cause

Can explicit regularization improve CNNs on long-range tasks?
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Implications for Modern Deep Learning

Countering Locality of CNNs via Regularization
Experiment
Tasks: “Is Same Class” and Pathfinder (Linsley et al. 2018, Tay et al. 2021)

distance: 0

distance: 160

Explicit regularization can improve CNNs on long-range tasks!
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Conclusion

Recap
Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):
Existing conjecture: implicit regularization minimizes norm

We showed: it can drive all norms to ∞ while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):
We showed: implicit regularization lowers tensorial ranks

Implications to Modern Deep Learning:
Parameterizing layers of NN as MF / TF/ HTF =⇒ compression

Rank lowering may explain generalization on natural data

One may counter locality of CNNs via explicit regularization!
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Conclusion

Implicit Rank Minimization in Deep Learning
Linear NN

matrix rank lowering

Deep Non-Linear CNN

hierarchical tensor rank lowering

Shallow Non-Linear CNN

tensor rank lowering

𝒙 𝒚

Hypothesis: in each NN architecture implicit
regularization lowers corresponding notion of rank

Discovering lowered notions of rank may pave way to:
Explaining generalization
Enhancing performance via regularization and architecture design
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Conclusion

Thank You!
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