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Implicit Regularization in Deep Learning

Generalization via Bias-Variance Tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Overfitting
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Implicit Regularization in Deep Learning

Generalization via Bias-Variance Tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Overfitting

Tradeoff can be controlled through:
@ Limiting model size

e Adding regularization (e.g. ¢» penalty)
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Implicit Regularization in Deep Learning

Generalization in Deep Learning

Neural networks (NNs) generalize with no explicit regularization despite:
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Implicit Regularization in Deep Learning

Generalization in Deep Learning

Neural networks (NNs) generalize with no explicit regularization despite:

ship  dog  deer

B
#Of horse ﬁ ship #Of
learned weights S e == training examples
-

Conventional Wisdom
Gradient descent (GD) induces implicit regularization towards “simplicity”

Goal
Mathematically characterize this implicit regularization
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Linear Models: Implicit Norm Minimization

Linear Regression
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Implicit Regularization in Deep Learning

Linear Models: Implicit Norm Minimization

Linear Regression

When # of learned weights > # of training examples:
GD initialized at 0 converges to min /> norm solution

argmin |w/||, s.t. w is global min
w
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Implicit Regularization in Deep Learning

Implicit Norm Minimization In Deep Learning?

Widespread Hope

In deep learning, GD finds solution with min norm (possibly not ¢;)

argmin |jw|| s.t. w is global min
w
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Implicit Regularization in Deep Learning

Implicit Norm Minimization In Deep Learning?

Widespread Hope

In deep learning, GD finds solution with min norm (possibly not ¢;)

argmin |jw|| s.t. w is global min
w

Demonstrated in various settings, e.g.:

Chizat & Bach 2020
Lyu et al. 2021

Ji & Telgarsky 2019a
Ji & Telgarsky 2019b

@ Neyshabur et al. 2015 @ Wu et al. 2019

@ Gunasekar et al. 2017 @ Oymak & Soltanolkotabi 2019
@ Soudry et al. 2018 @ Nacson et al. 2019a

@ Gunasekar et al. 2018a @ Nacson et al. 2019b

@ Gunasekar et al. 2018b @ Woodworth et al. 2020

@ Lietal 2018 @ Lyu & Li 2020

@ Jacot et al. 2018 @ Ali et al. 2020

o o
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Implicit Regularization in Deep Learning

Perspective: Implicit Rank Minimization

Perspective
To understand implicit regularization in deep learning:

@ Language of standard norm regularizers might not suffice

@ Notions of rank may be key

Case will be made via matrix and tensor factorizations

2
o o6 ¢
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Matrix Factorization

Matrix Completion «— Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

NOW YOU g e
1 f

e it |l
Bob 4 ? ? 4 .
observations {yi,j} .
Alice ? 5 4 ? (i,))eq
Joe ? 5 ? ?
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Matrix Factorization

Matrix Completion «— Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

NOWVOUSEEME
VP
A Ry
Bob 4 ? ?
observations {yi,j} s
Alice ? 5 4 ? (LHeq
Joe ? 5 ? ?

d x d’ matrix completion +— prediction from {1,...,d} x {1,...,d'} to R

value of entry (i,j) <+— label of input (/)

observed entries s train data
unobserved entries <+— test data
matrix e predictor
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Matrix Factorization

MF <— Linear NN

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

. 2
minw, ..w, Z(,J GQ([WLWL 1o WAlij — vig)
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Matrix Factorization
MF <— Linear NN

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD
. 2
minw,,...w, Z(U ca ((WeWp1--- WALij — vij)
/]\

hidden dimensions large enough to not limit rank
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Matrix Factorization
MF <— Linear NN

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD
. 2
minw, ...w, Z(U ca (W Wiy - WAl — yig)
/]\
hidden dimensions large enough to not limit rank

MF Linear NN

W, |%eco% W, |+ W, <:> x> Wy P W, et W, Y
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Matrix Factorization
MF <— Linear NN

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

MF

wy

w,

Wy

Empirical Phenomenon (Gunasekar et al. 2017)

minw, ... w, Z(U EQ([WLWL 1°
/]\

2
- WAlij = yij)

hidden dimensions large enough to not limit rank

Linear NN

(> =

Wy

WZ > e

W,

—>Y

MF (with small init and step size) accurately recovers low rank matrices
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Matrix Factorization

Conjecture: Nuclear Norm Minimization

Classic Result (Candes & Recht 2009)
For low rank ground truth:

min HWHnucIear s.t. [W]i,j =VYij v(’7./) €Q

perfectly recovers under certain technical conditions
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Classic Result (Candes & Recht 2009)
For low rank ground truth:
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perfectly recovers under certain technical conditions

Conjecture (Gunasekar et al. 2017)

Training MF via gradient flow (GD with step size — 0) with small init
= min nuclear norm solution
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Matrix Factorization

Conjecture: Nuclear Norm Minimization

Classic Result (Candes & Recht 2009)
For low rank ground truth:

min HWHnuc/ear s.t. [W]i,j =VYij v(’7./) €Q

perfectly recovers under certain technical conditions

Conjecture (Gunasekar et al. 2017)

Training MF via gradient flow (GD with step size — 0) with small init
= min nuclear norm solution

Proven in certain restricted cases (Gunasekar et al. 2017, Li et al. 2018, Belabbas 2020)
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Matrix Factorization

Conjecture: No Norm is Minimized

We .= W, --- W7 — end matrix {O’S\Z)} — singular values of W,
r
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Matrix Factorization

Conjecture: No Norm is Minimized

We .= W, --- W7 — end matrix {O’S\Z)} — singular values of W,
r

Theorem (Arora et al. 2019)

~In

When training MF with near-zero init: .o (r)( )ocafw)(t)%
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Matrix Factorization

Conjecture: No Norm is Minimized

We := W --- Wi — end matrix {O’S\Z)} — singular values of W,
r
Theorem (Arora et al. 2019)

~In

When training MF with near-zero init: .o (r)( )ocafw)(t)%

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF

—

T T T T T
1000 2000 3000 4000 5000
iterations

N
o

singular values
N
o
!

o
L
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Matrix Factorization

Conjecture: No Norm is Minimized

We .= W, --- W7 — end matrix {O’S\Z)} — singular values of W,
r

Theorem (Arora et al. 2019)

~In

When training MF with near-zero init: .o (r)( )ocafw)(t)%

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF

N
o

E Incremental learning of
> -

5207 singular values leads to
>

g low rank

o
L
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Matrix Factorization

Conjecture: No Norm is Minimized

We .= W, --- W7 — end matrix {O’S\Z)} — singular values of W,
r

Theorem (Arora et al. 2019)

When training MF with near-zero init: %a(r)(t) x o(r)(t)zf%

M M

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF

N
o

Incremental learning of

singular values leads to
low rank

T T T T T
1000 2000 3000 4000 5000
iterations

singular values
N
o

o
L

Conjecture (Arora et al. 2019)

For any |-

, exist observations for which MF =4 min |-|| solution
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Matrix Factorization Implicit Regularization # Norm Minimization

Our Work: Implicit Regularization 2 Norm Minimization

‘ Does the implicit regularization in MF minimize a norm?
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Our Work: Implicit Regularization 2 Norm Minimization

‘ Does the implicit regularization in MF minimize a norm?
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Matrix Factorization Implicit Regularization # Norm Minimization

Our Work: Implicit Regularization 2 Norm Minimization

‘ Does the implicit regularization in MF minimize a norm?

There exist matrix completion settings where MF drives all norms to co
while effective rank is minimized

Implicit regularization in MF# norm minimization

Experiment

751
50 A /

norm

25 A

107! 1072 1073 107
loss

Chou et al. 2020, Li et al. 2021: further support for implicit rank minimization
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Drawbacks of Studying MF

?(514(?)| = WL * oo x Wz * Wl
?

As a surrogate for deep learning, MF is limited:
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Drawbacks of Studying MF

?(5(4(?| = WL * e oo % Wz * Wl

As a surrogate for deep learning, MF is limited:
(1) Misses non-linearity

(2) Does not capture prediction with more than 2 input variables

Tensor factorization accounts for both (1) and (2)

Noam Razin (TAU) Generalization in DL via Rank Lowering 17 /34



Tensor Factorization
Tensor Completion «+— Multi-Dimensional Prediction

Tensor: N-dimensional array (N = order of tensor)
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Tensor Factorization

Tensor Completion «+— Multi-Dimensional Prediction

Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

.
1 , . ? observations {yii'“"iN}(il,...,iN)eQ
- [d]] ;T {1,...,d;}
di X -+ X dy tensor completion «— prediction from [di] x -+ X [dy] to R
value of entry (i, ..., in) <— label of input (i1,...,in)
observed entries — train data
unobserved entries —> test data
tensor G predictor
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Tensor Factorization
TF «—— Shallow Non-Linear Convolutional NN

Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

H 2
mln{wp}r,n Z(’.lym,iN)eQ ([ZF:IW} ®-® Wiv]ilmqiN - yh,...,iN)
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Parameterize solution as sum of outer products and fit observations via GD

H 2
mln{wp}r,n Z(’.lym,iN)eQ ([ZF:IW} ®-® Wiv]ilmqiN - yh,...,iN)

Tensor rank: min # of components (R) required to express a tensor
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Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD
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R large enough to not constrain tensor rank
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Parameterize solution as sum of outer products and fit observations via GD
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R large enough to not constrain tensor rank
Tensor rank: min # of components (R) required to express a tensor

Shallow Non-Linear
Convolutional NN (CNN)

TF
input conv
m - 5 g

EqUiValence Studied eXtenSiVer (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)
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Dynamical Analysis of Implicit Regularization in TF
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Dynamical Analysis of Implicit Regularization in TF

U(Tr) .= ||®M_; w”||r — Frobenius norm of r'th component

When training TF with near-zero init: %O'(-,f)(t) oca(Tr)(t)zf%

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF
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U(Tr) .= ||®M_; w”||r — Frobenius norm of r'th component

When training TF with near-zero init: %O'(-,f)(t) ma(Tr)(t)zf%

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF
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Tensor Factorization

Dynamical Analysis of Implicit Regularization in TF

U(Tr) .= ||®M_; w”||r — Frobenius norm of r'th component

When training TF with near-zero init: %U(Tr)(t) ma(Tr)(t)zf%

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF

Incremental learning of
components leads to
low tensor rank!
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iterations
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o
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component norms

o

Theorem (under technical conditions)

If tensor completion has tensor rank 1 solution, then TF will reach it

Noam Razin (TAU) Generalization in DL via Rank Lowering 20/34



Tensor Factorization

Analogy Between Implicit Regularizations
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Analogy Between Implicit Regularizations

MF TF
Quantity singular values component norms
i d () (r)4y2—2 d _(r) (r)(sy2—2
Dynamics Loy () ooy (07T Foy () ooy (1) N
) 40 é 40
=] o
E [=
Experiment ¢ 201 £ 20 [\
S 5
3 | g |
@ 01 . , g o . . .
2000 4000 2000 4000 6000
iterations iterations
Incremental
rank tensor rank

learning lowers

Implicit regularizations in MF and TF have identical structure!
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Hierarchical Tensor Factorization
HTF +— Deep Non-Linear CNN

TF does not account for depth
TF Shallow Non-Linear CNN

(sum of components)
input conv

pOOl output
- &

Noam Razin (TAU) Generalization in DL via Rank Lowering


https://arxiv.org/pdf/1509.05009.pdf
https://arxiv.org/pdf/1704.01552.pdf
https://arxiv.org/pdf/1711.00811.pdf

Hierarchical Tensor Factorization
HTF +— Deep Non-Linear CNN

TF does not account for depth
Shallow Non-Linear CNN

(sum of components)

input conv
j C pool output
@ o

Hierarchical Tensor Factorization (HTF):
HTF

local TF
(sum of local components)
% oo oHieH
aee ! !
WYy
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Hierarchical Tensor Factorization (HTF):
HTF Deep Non-Linear CNN
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HTF +— Deep Non-Linear CNN

TF does not account for depth

Shallow Non-Linear CNN

(sum of components)
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j C pool output
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Hierarchical Tensor Factorization (HTF):
HTF Deep Non-Linear CNN

;{%& local TF
(sum of local components) _input __conv__
pool
: / <\::> conv
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toRe}

Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)
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Hierarchical Tensor Factorization

HTF +— Deep Non-Linear CNN

TF does not account for depth

Shallow Non-Linear CNN

(sum of components)

input conv
j C pool output
@ o

Hierarchical Tensor Factorization (HTF):
HTF Deep Non-Linear CNN

;{%& local TF
(sum of local components) _input __conv__
pool
: / <\::> conv
* I’ S ': @ %) output
toRe}

Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)

Representation w/ few local components = low hierarchical tensor rank
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Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF

ag) — Frobenius norm of r'th local component in a location of HTF

Noam Razin (TAU) Generalization in DL via Rank Lowering



Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF

ag) — Frobenius norm of r'th local component in a location of HTF

K — order of local component

Noam Razin (TAU) Generalization in DL via Rank Lowering



Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF

ag) — Frobenius norm of r'th local component in a location of HTF

K — order of local component

When training HTF with near-zero init: %ag)(t) x ag)(t)%%
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Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF

ag) — Frobenius norm of r'th local component in a location of HTF

K — order of local component

When training HTF with near-zero init: %ag)(t) x ag)(t)%%

Local component norms move slower when small and faster when large!
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Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF

ag) — Frobenius norm of r'th local component in a location of HTF

K — order of local component

When training HTF with near-zero init: %ag)(t) x ag)(t)%%

Local component norms move slower when small and faster when large!

Experiment: completion of low hierarchical tensor rank tensor via HTF
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Hierarchical Tensor Factorization

Dynamical Analysis of Implicit Regularization in HTF

ag) — Frobenius norm of r'th local component in a location of HTF

K — order of local component

When training HTF with near-zero init: %a(r)(t) x ag)(t)%%

H

Local component norms move slower when small and faster when large!

Experiment: completion of low hierarchical tensor rank tensor via HTF
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Hierarchical Tensor Factorization

Analogy Between Implicit Regularizations
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Implicit regularizations in MF, TF and HTF have identical structure!
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Implications for Modern Deep Learning

Practical Application: Rank Lowering in NN Layers

Parameterize layers of NN as MF / TF / HTF

= implicit rank lowering induces compressibility and generalization
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Potential Explanation for Generalization on Natural Data

Challenge
Find complexity measures that:

@ Are implicitly lowered by GD over NNs

e Capture essence of natural data (allow its fit with low complexity)

Can ranks serve as measures of complexity? ‘

Experiment
MNIST & FMNIST can be fit with low (hierarchical) tensor rank
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Implications for Modern Deep Learning

Potential Explanation for Generalization on Natural Data

Challenge
Find complexity measures that:

@ Are implicitly lowered by GD over NNs

e Capture essence of natural data (allow its fit with low complexity)

Can ranks serve as measures of complexity? ‘

Experiment
MNIST & FMNIST can be fit with low (hierarchical) tensor rank

SRON- I SETE

Implicit lowering of ranks may
explain generalization on natural data!
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Implications for Modern Deep Learning

Countering Locality of CNNs via Regularization
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Implications for Modern Deep Learning
Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)
Hierarchical tensor rank measures long-range dependencies

| Local dependencies |

| Long-range dependencies |
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Implications for Modern Deep Learning
Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)
Hierarchical tensor rank measures long-range dependencies

Implicit lowering of

| LocaIdEpendenc'es| hierarchical tensor rank in HTF

Implicit lowering of
| long-range dependencies in CNNs!

| Long-range dependencies

CNNs are not suitable for long-range tasks

@ Conventional wisdom: due to expressiveness
(Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)
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Implications for Modern Deep Learning
Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)
Hierarchical tensor rank measures long-range dependencies

Implicit lowering of

| LocaIdEpendenc'es| hierarchical tensor rank in HTF

Implicit lowering of
| long-range dependencies in CNNs!

| Long-range dependencies

CNNs are not suitable for long-range tasks

@ Conventional wisdom: due to expressiveness
(Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)

@ Our analysis: implicit regularization is also a cause
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Implications for Modern Deep Learning
Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)
Hierarchical tensor rank measures long-range dependencies

- Implicit lowering of
| Localdependenc'es| hierarchical tensor rank in HTF

A e t
AN ‘\--/"IZ| Implicit lowering of

| Long-range dependencies | long-range dependencies in CNNs!

CNNs are not suitable for long-range tasks

@ Conventional wisdom: due to expressiveness
(Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)

@ Our analysis: implicit regularization is also a cause

Can explicit regularization improve CNNs on long-range tasks?

Generalization in DL via Rank Lowering
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Implications for Modern Deep Learning
Countering Locality of CNNs via Regularization

Experiment
Tasks: “Is Same Class" and Pathfinder (Linsley et al. 2018, Tay et al. 2021)
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Implications for Modern Deep Learning

Countering Locality of CNNs via Regularization

Experiment
Tasks: “Is Same Class" and Pathfinder (Linsley et al. 2018, Tay et al. 2021)
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Regularization: promotes high hierarchical tensor rank
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Implications for Modern Deep Learning

Countering Locality of CNNs via Regularization

Experiment

Tasks: “Is Same Class" and Pathfinder (Linsley et al. 2018, Tay et al. 2021)

distance: 0 & length:6 &  length: 9 X

distance: 160 X
- 4

Regularization: promotes high hierarchical tensor rank
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Explicit regularization can improve CNNs on long-range tasks!
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Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

@ Existing conjecture: implicit regularization minimizes norm

@ WWe showed: it can drive all norms to co while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):
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@ WWe showed: it can drive all norms to co while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):

o We showed: implicit regularization lowers tensorial ranks

Implications to Modern Deep Learning;:

o Parameterizing layers of NN as MF / TF/ HTF = compression
@ Rank lowering may explain generalization on natural data

@ One may counter locality of CNNs via explicit regularization!
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Implicit Rank Minimization in Deep Learning

Linear NN Shallow Non-Linear CNN Deep Non-Linear CNN
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@ m 9 =
matrix rank lowering tensor rank lowering hierarchical tensor rank lowering

??? rank lowering ??? rank lowering ??? rank lowering

Hypothesis: in each NN architecture implicit
regularization lowers corresponding notion of rank

Discovering lowered notions of rank may pave way to:
@ Explaining generalization

@ Enhancing performance via regularization and architecture design
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