Generalization in Deep Learning Through the Lens of Implicit Rank Lowering

Noam Razin

Tel Aviv University

Sources

Implicit Regularization in Deep Learning May Not Be Explainable by Norms

R + Cohen

NeurIPS 2020

Implicit Regularization in Tensor Factorization

 R^* + Maman* + Cohen

ICML 2021

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

R + Maman + Cohen

ICML 2022

Nadav Cohen

^{*}Equal contribution

Outline

- 1 Implicit Regularization in Deep Learning
- 2 Matrix Factorization• Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- 5 Implications for Modern Deep Learning
- 6 Conclusion

Classically, generalization is understood via the bias-variance tradeoff

Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

Limiting model size

Classically, generalization is understood via the bias-variance tradeoff

Tradeoff can be controlled through:

- Limiting model size
- Adding regularization (e.g. ℓ_2 penalty)

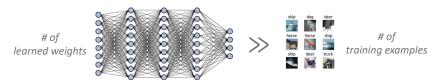
Generalization in Deep Learning

Neural networks (NNs) generalize with no explicit regularization despite:



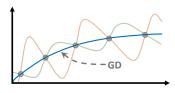
Generalization in Deep Learning

Neural networks (NNs) generalize with no explicit regularization despite:



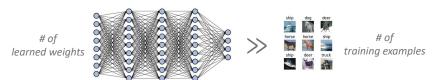
Conventional Wisdom

Gradient descent (GD) induces implicit regularization towards "simplicity"



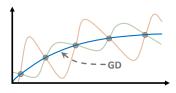
Generalization in Deep Learning

Neural networks (NNs) generalize with no explicit regularization despite:



Conventional Wisdom

Gradient descent (GD) induces implicit regularization towards "simplicity"

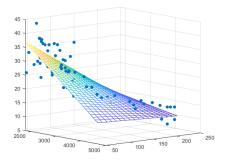


Goal

Mathematically characterize this implicit regularization

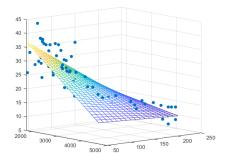
Linear Models: Implicit Norm Minimization

Linear Regression



Linear Models: Implicit Norm Minimization

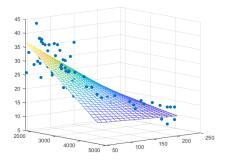
Linear Regression



When # of learned weights > # of training examples:

Linear Models: Implicit Norm Minimization

Linear Regression



When # of learned weights > # of training examples:

GD initialized at 0 converges to min ℓ_2 norm solution

 $\underset{\mathbf{w}}{\operatorname{argmin}} \ \|\mathbf{w}\|_2 \ \text{s.t.} \ \mathbf{w} \ \text{is global min}$

Implicit Norm Minimization In Deep Learning?

Widespread Hope

In deep learning, GD finds solution with min norm (possibly not ℓ_2)

 $\underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\| \text{ s.t. } \mathbf{w} \text{ is global min}$

Implicit Norm Minimization In Deep Learning?

Widespread Hope

In deep learning, GD finds solution with min norm (possibly not ℓ_2)

```
\underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\| \text{ s.t. } \mathbf{w} \text{ is global min}
```

Demonstrated in various settings, e.g.:

- Neyshabur et al. 2015
- Gunasekar et al. 2017
- Soudry et al. 2018
- Gunasekar et al. 2018a
- Gunasekar et al. 2018b
- Li et al. 2018
- Jacot et al. 2018
- Ji & Telgarsky 2019a
- Ji & Telgarsky 2019b

- Wu et al. 2019
- Oymak & Soltanolkotabi 2019
- Nacson et al. 2019a
- Nacson et al. 2019b
- Woodworth et al. 2020
- Lyu & Li 2020
- Ali et al. 2020
- Chizat & Bach 2020
- Lyu et al. 2021

Perspective

To understand implicit regularization in deep learning:

Perspective

To understand implicit regularization in deep learning:

• Language of standard norm regularizers might not suffice

Perspective

To understand implicit regularization in deep learning:

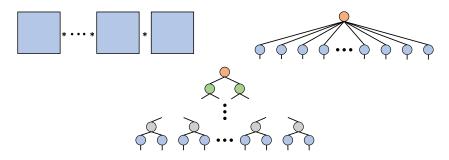
- Language of standard norm regularizers might not suffice
- Notions of rank may be key

Perspective

To understand implicit regularization in deep learning:

- Language of standard norm regularizers might not suffice
- Notions of rank may be key

Case will be made via matrix and tensor factorizations



Outline

- Implicit Regularization in Deep Learning
- Matrix Factorization
 - Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- 5 Implications for Modern Deep Learning
- Conclusion

	Avenuens	THE PRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET	
Bob	4	?	?	4 ←	observations $\left\{ y_{i,j} ight\}_{(i,j) \in \Omega}$
Alice	?	5	4 ←	?	$(\mathcal{F}_{i,j})_{(i,j)\in\Omega}$
Joe	?	5	?	?	

Matrix completion: recover unknown matrix given subset of entries

	Avantas	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET	
Bob	4	?	?	4 ←	observations $\left\{y_{i,j} ight\}_{(i,j)\in\Omega}$
Alice	?	5	4 ←	?	$(j_{i,j})_{(i,j)\in\Omega}$
Joe	?	5	?	?	

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET	
Bob	4	?	?	4 ←	observations $\left\{y_{i,j} ight\}_{(i,j)\in\Omega}$
Alice	?	5	4 _	?	$(\mathcal{F}_{i,j})_{(i,j)\in\Omega}$
Joe	?	5	?	?	

$$d imes d'$$
 matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$ value of entry $(i,j) \longleftrightarrow$ label of input (i,j)

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET	
Bob	4	?	?	4 ←	observations $\left\{y_{i,j} ight\}_{(i,j)\in\Omega}$
Alice	?	5	4 ←	?	$(\mathcal{F}_{l,J})_{(i,j)\in\Omega}$
Joe	?	5	?	?	

$$d \times d'$$
 matrix completion \longleftrightarrow prediction from $\{1,...,d\} \times \{1,...,d'\}$ to \mathbb{R} value of entry $(i,j) \longleftrightarrow$ label of input (i,j) observed entries \longleftrightarrow train data

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET	
Bob	4	?	?	4 ←	observations $\left\{ y_{i,j} \right\}_{(i,j) \in \Omega}$
Alice	?	5	4 _	?	$(\mathcal{F}_{i,j})_{(i,j)\in\Omega}$
Joe	?	5	?	?	

$$d imes d'$$
 matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$ value of entry $(i,j) \longleftrightarrow$ label of input (i,j) observed entries \longleftrightarrow train data unobserved entries \longleftrightarrow test data

	Availlan	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET	
Bob	4	?	?	4 ←	observations $\left\{y_{i,j}\right\}_{(i,j)\in\Omega}$
Alice	?	5	4 ←	?	$(\mathcal{F}_{i,j})(i,j) \in \Omega$
Joe	?	5	?	?	

$$d \times d'$$
 matrix completion \longleftrightarrow prediction from $\{1,...,d\} \times \{1,...,d'\}$ to \mathbb{R} value of entry $(i,j) \longleftrightarrow$ label of input (i,j) observed entries \longleftrightarrow train data unobserved entries \longleftrightarrow test data matrix \longleftrightarrow predictor

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$\min_{W_1,...,W_L} \sum_{(i,j) \in \Omega} ([W_L W_{L-1} \cdots W_1]_{i,j} - y_{i,j})^2$$

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$\min_{W_1,\ldots,W_L} \sum_{(i,j)\in\Omega} ([W_L W_{L-1}\cdots W_1]_{i,j} - y_{i,j})^2$$

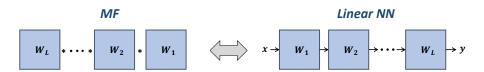
hidden dimensions large enough to not limit rank

Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$\min_{W_1,\dots,W_L} \sum_{(i,j)\in\Omega} ([W_L W_{L-1} \cdots W_1]_{i,j} - y_{i,j})^2$$

hidden dimensions large enough to not limit rank

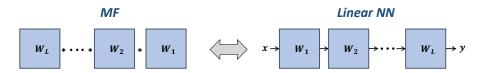


Matrix Factorization (MF):

Parameterize solution as product of matrices and fit observations via GD

$$\min_{W_1,\dots,W_L} \sum_{(i,j)\in\Omega} ([W_L W_{L-1} \cdots W_1]_{i,j} - y_{i,j})^2$$

hidden dimensions large enough to not limit rank



Empirical Phenomenon (Gunasekar et al. 2017)

MF (with small init and step size) accurately recovers low rank matrices

Conjecture: Nuclear Norm Minimization

Classic Result (Candes & Recht 2009)

For low rank ground truth:

min
$$\|W\|_{nuclear}$$
 s.t. $[W]_{i,j} = y_{i,j} \ \forall (i,j) \in \Omega$

perfectly recovers under certain technical conditions

Conjecture: Nuclear Norm Minimization

Classic Result (Candes & Recht 2009)

For low rank ground truth:

min
$$\|W\|_{nuclear}$$
 s.t. $[W]_{i,j} = y_{i,j} \ \forall (i,j) \in \Omega$

perfectly recovers under certain technical conditions

Conjecture (Gunasekar et al. 2017)

Training MF via gradient flow (GD with step size \rightarrow 0) with small init \implies min nuclear norm solution

Conjecture: Nuclear Norm Minimization

Classic Result (Candes & Recht 2009)

For low rank ground truth:

min
$$\|W\|_{nuclear}$$
 s.t. $[W]_{i,j} = y_{i,j} \ \forall (i,j) \in \Omega$

perfectly recovers under certain technical conditions

Conjecture (Gunasekar et al. 2017)

Training MF via gradient flow (GD with step size \rightarrow 0) with small init \implies min nuclear norm solution

Proven in certain restricted cases (Gunasekar et al. 2017, Li et al. 2018, Belabbas 2020)

Conjecture: No Norm is Minimized

Conjecture: No Norm is Minimized

$$W_e := W_L \cdots W_1$$
 — end matrix $\left\{ \sigma_M^{(r)} \right\}_r$ — singular values of W_e

Conjecture: No Norm is Minimized

$$W_e := W_L \cdots W_1$$
 — end matrix $\left\{\sigma_M^{(r)}\right\}_r$ — singular values of W_e

Theorem (Arora et al. 2019)

When training MF with near-zero init: $\frac{d}{dt}\sigma_M^{(r)}(t)\propto\sigma_M^{(r)}(t)^{2-\frac{2}{L}}$

$$W_e := W_L \cdots W_1$$
 — end matrix $\left\{\sigma_M^{(r)}\right\}_r$ — singular values of W_e

Theorem (Arora et al. 2019)

When training MF with near-zero init: $\frac{d}{dt}\sigma_M^{(r)}(t)\propto\sigma_M^{(r)}(t)^{2-\frac{2}{L}}$

Singular values move slower when small and faster when large!

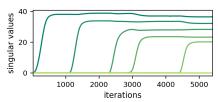
$$W_e := W_L \cdots W_1$$
 — end matrix $\left\{\sigma_M^{(r)} \right\}_r$ — singular values of W_e

Theorem (Arora et al. 2019)

When training MF with near-zero init: $\frac{d}{dt}\sigma_M^{(r)}(t) \propto \sigma_M^{(r)}(t)^{2-\frac{2}{L}}$

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF



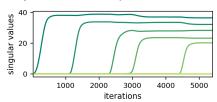
$$W_{\mathsf{e}} := W_{\mathsf{L}} \cdots W_1$$
 — end matrix $\left\{\sigma_{M}^{(r)}
ight\}_{r}$ — singular values of W_{e}

Theorem (Arora et al. 2019)

When training MF with near-zero init: $\frac{d}{dt}\sigma_M^{(r)}(t) \propto \sigma_M^{(r)}(t)^{2-\frac{2}{L}}$

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF



Incremental learning of singular values leads to low rank

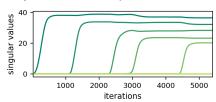
$$W_{\mathsf{e}} := W_{\mathsf{L}} \cdots W_{\mathsf{1}}$$
 — end matrix $\left\{ \sigma_{\mathsf{M}}^{(r)} \right\}_{\mathsf{r}}$ — singular values of W_{e}

Theorem (Arora et al. 2019)

When training MF with near-zero init: $\frac{d}{dt}\sigma_M^{(r)}(t) \propto \sigma_M^{(r)}(t)^{2-\frac{2}{L}}$

Singular values move slower when small and faster when large!

Experiment: completion of low rank matrix via MF



Incremental learning of singular values leads to low rank

Conjecture (Arora et al. 2019)

For any $\|\cdot\|$, exist observations for which $MF \implies \min \|\cdot\|$ solution

Outline

- 1 Implicit Regularization in Deep Learning
- Matrix Factorization
 - Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- 5 Implications for Modern Deep Learning
- Conclusion

Our Work: Implicit Regularization ≠ Norm Minimization

Does the implicit regularization in MF minimize a norm?

Our Work: Implicit Regularization \neq Norm Minimization

Does the implicit regularization in MF minimize a norm?

$\mathsf{Theorem}$

There exist matrix completion settings where MF drives all norms to ∞ while effective rank is minimized

Our Work: Implicit Regularization ≠ Norm Minimization

Does the implicit regularization in MF minimize a norm?

$\mathsf{Theorem}$

There exist matrix completion settings where MF drives all norms to ∞ while effective rank is minimized

Implicit regularization in MF≠ norm minimization

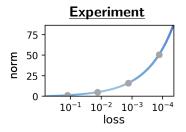
Our Work: Implicit Regularization \neq Norm Minimization

Does the implicit regularization in MF minimize a norm?

$\mathsf{Theorem}$

There exist matrix completion settings where MF drives all norms to ∞ while effective rank is minimized

Implicit regularization in MF≠ norm minimization



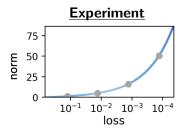
Our Work: Implicit Regularization ≠ Norm Minimization

Does the implicit regularization in MF minimize a norm?

$\mathsf{Theorem}$

There exist matrix completion settings where MF drives all norms to ∞ while effective rank is minimized

Implicit regularization in MF≠ norm minimization



Chou et al. 2020, Li et al. 2021: further support for implicit rank minimization

Outline

- Implicit Regularization in Deep Learning
- Matrix Factorization Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- 5 Implications for Modern Deep Learning
- 6 Conclusion

As a surrogate for deep learning, MF is limited:

As a surrogate for deep learning, MF is limited:

(1) Misses non-linearity

As a surrogate for deep learning, MF is limited:

- (1) Misses non-linearity
- (2) Does not capture prediction with more than 2 input variables

As a surrogate for deep learning, MF is limited:

- (1) Misses non-linearity
- (2) Does not capture prediction with more than 2 input variables

Tensor factorization accounts for both (1) and (2)

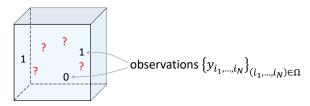
Tensor Completion ←→ Multi-Dimensional Prediction

Tensor: N-dimensional array (N = order of tensor)

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N = order of tensor)

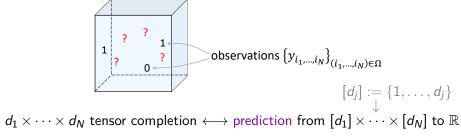
Tensor completion: recover unknown tensor given subset of entries



Tensor Completion ←→ Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N = order of tensor)

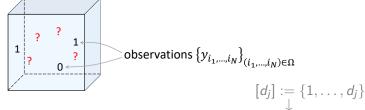
Tensor completion: recover unknown tensor given subset of entries



Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

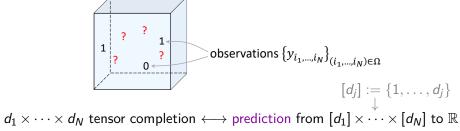


 $[d_j] := \{1, \dots, d_j\}$ $\downarrow \downarrow$ $d_1 \times \dots \times d_N \text{ tensor completion} \longleftrightarrow \text{prediction from } [d_1] \times \dots \times [d_N] \text{ to } \mathbb{R}$ $\text{value of entry } (i_1, \dots, i_N) \longleftrightarrow \text{label of input } (i_1, \dots, i_N)$

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: N-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries

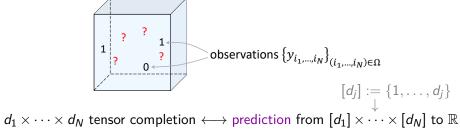


value of entry
$$(i_1, \ldots, i_N) \longleftrightarrow$$
 label of input (i_1, \ldots, i_N) observed entries \longleftrightarrow train data

Tensor Completion ←→ Multi-Dimensional Prediction

Tensor: N-dimensional array (N =order of tensor)

Tensor completion: recover unknown tensor given subset of entries



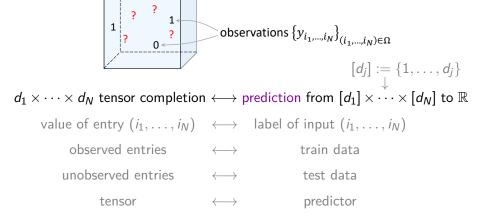
value of entry
$$(i_1,\ldots,i_N) \longleftrightarrow$$
 label of input (i_1,\ldots,i_N) observed entries \longleftrightarrow train data

unobserved entries \longleftrightarrow test data

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: *N*-dimensional array (N = order of tensor)

Tensor completion: recover unknown tensor given subset of entries



Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum\nolimits_{(i_1,\ldots,i_N) \in \Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum\nolimits_{(i_1,\ldots,i_N) \in \Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

Tensor rank: min # of components (R) required to express a tensor

Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N) \in \Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

R large enough to not constrain tensor rank

Tensor rank: min # of components (R) required to express a tensor

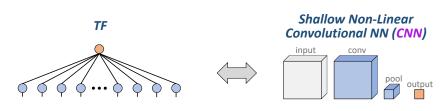
Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N)\in\Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

R large enough to not constrain tensor rank

Tensor rank: min # of components (R) required to express a tensor



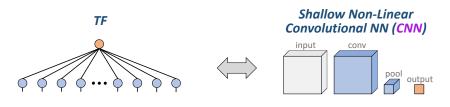
Tensor Factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\substack{\{\mathbf{w}_r^n\}_{r,n}}} \sum_{(i_1,\ldots,i_N)\in\Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N\right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N}\right)^2$$

R large enough to not constrain tensor rank

Tensor rank: min # of components (R) required to express a tensor



Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)

$$\sigma_T^{(r)} := \| \otimes_{n=1}^N \mathbf{w}_r^n \|_F$$
 — Frobenius norm of r 'th component

$$\sigma_T^{(r)} := \| \otimes_{n=1}^N \mathbf{w}_r^n \|_F$$
 — Frobenius norm of r 'th component

Theorem

When training TF with near-zero init: $\frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-\frac{2}{N}}$

$$\sigma_T^{(r)} := \| \otimes_{n=1}^N \mathbf{w}_r^n \|_F$$
 — Frobenius norm of r 'th component

Theorem

When training TF with near-zero init: $\frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-\frac{2}{N}}$

Component norms move slower when small and faster when large!

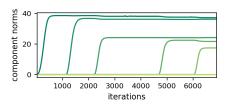
$$\sigma_T^{(r)} := \| \otimes_{n=1}^N \mathbf{w}_r^n \|_F$$
 — Frobenius norm of r 'th component

Theorem

When training TF with near-zero init: $\frac{d}{dt}\sigma_T^{(r)}(t)\propto\sigma_T^{(r)}(t)^{2-\frac{2}{N}}$

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF



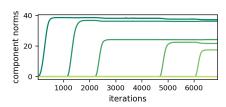
 $\sigma_T^{(r)} := \| \otimes_{n=1}^N \mathbf{w}_r^n \|_F$ — Frobenius norm of r'th component

Theorem

When training TF with near-zero init: $\frac{d}{dt}\sigma_T^{(r)}(t)\propto\sigma_T^{(r)}(t)^{2-\frac{2}{N}}$

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF



Incremental learning of components leads to low tensor rank!

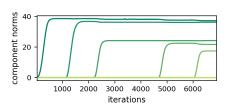
 $\sigma_T^{(r)} := \| \otimes_{n=1}^N \mathbf{w}_r^n \|_F$ — Frobenius norm of r'th component

Theorem

When training TF with near-zero init: $\frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-\frac{2}{N}}$

Component norms move slower when small and faster when large!

Experiment: completion of low tensor rank tensor via TF

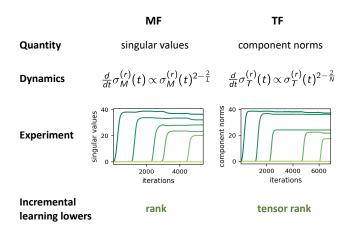


Incremental learning of components leads to low tensor rank!

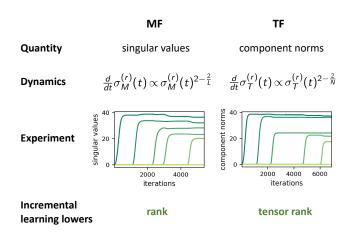
Theorem (under technical conditions)

If tensor completion has tensor rank 1 solution, then TF will reach it

Analogy Between Implicit Regularizations



Analogy Between Implicit Regularizations

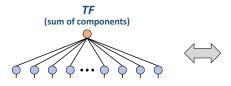


Implicit regularizations in MF and TF have identical structure!

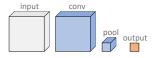
Outline

- Implicit Regularization in Deep Learning
- Matrix Factorization Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- Implications for Modern Deep Learning
- 6 Conclusion

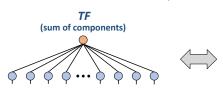
TF does not account for depth



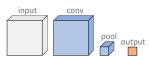
Shallow Non-Linear CNN



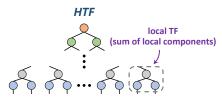
TF does not account for depth



Shallow Non-Linear CNN

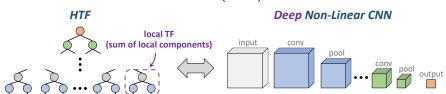


Hierarchical Tensor Factorization (HTF):



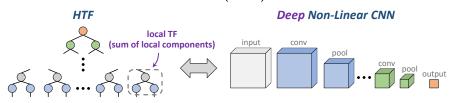
TF does not account for depth

Hierarchical Tensor Factorization (HTF):



TF does not account for depth

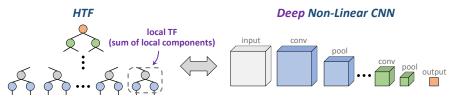
Hierarchical Tensor Factorization (HTF):



Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)

TF does not account for depth

Hierarchical Tensor Factorization (HTF):



Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018, Khrulkov et al. 2018)

Representation w/ few local components \implies low hierarchical tensor rank

 $\sigma_H^{(r)}$ — Frobenius norm of r'th local component in a location of HTF

 $\sigma_H^{(r)}$ — Frobenius norm of r'th local component in a location of HTF

K — order of local component

 $\sigma_H^{(r)}$ — Frobenius norm of r'th local component in a location of HTF

K — order of local component

$\mathsf{Theorem}$

When training HTF with near-zero init: $\frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-\frac{2}{K}}$

 $\sigma_H^{(r)}$ — Frobenius norm of r'th local component in a location of HTF

K — order of local component

$\mathsf{Theorem}$

When training HTF with near-zero init: $\frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-\frac{2}{K}}$

Local component norms move slower when small and faster when large!

 $\sigma_H^{(r)}$ — Frobenius norm of r'th local component in a location of HTF

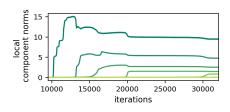
K — order of local component

Theorem

When training HTF with near-zero init: $\frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-\frac{2}{K}}$

Local component norms move slower when small and faster when large!

Experiment: completion of low hierarchical tensor rank tensor via HTF



 $\sigma_{H}^{(r)}$ — Frobenius norm of r'th local component in a location of HTF

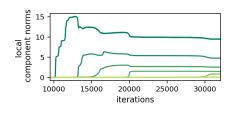
K — order of local component

Theorem

When training HTF with near-zero init: $\frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-\frac{2}{K}}$

Local component norms move slower when small and faster when large!

Experiment: completion of low hierarchical tensor rank tensor via HTF



Incremental learning of local components leads to low hierarchical tensor rank!

Analogy Between Implicit Regularizations

MF

TF

HTF

Quantity

singular values

component norms

local component norms

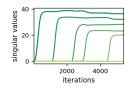
Dynamics

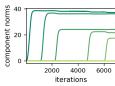
$$\frac{d}{dt}\sigma_M^{(r)}(t) \propto \sigma_M^{(r)}(t)^{2-\frac{2}{L}} \qquad \frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-\frac{2}{N}} \qquad \frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-\frac{2}{K}}$$

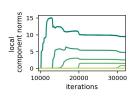
$$\frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-\frac{2}{N}}$$

$$\frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-\frac{2}{K}}$$

Experiment







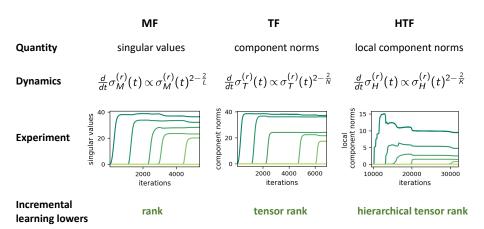
Incremental learning lowers

rank

tensor rank

hierarchical tensor rank

Analogy Between Implicit Regularizations



Implicit regularizations in MF, TF and HTF have identical structure!

Outline

- Implicit Regularization in Deep Learning
- Matrix Factorization Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- 5 Implications for Modern Deep Learning
- Conclusion

Parameterize layers of NN as MF / TF / HTF

Parameterize layers of NN as MF / TF / HTF

 \implies implicit rank lowering induces compressibility and generalization

Parameterize layers of NN as MF / TF / HTF

implicit rank lowering induces compressibility and generalization

Implicit Rank-Minimizing Autoencoder

Li Jing Facebook AI Research New York

Jure Zbontar Facebook AI Research New York

Yann LeCun Facebook AI Research New York

ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks

Shuxuan Guo CVI ab EPFI. Jose M. Alvarez NVIDIA

Mathieu Salzmann CVI ab EPFI

THE LOW-RANK SIMPLICITY BIAS IN DEEP NETWORKS

Minyoung Huh MIT CSAIL Brian Cheung MIT CSAIL & BCS Hossein Mobahi Google Research Pulkit Agrawal MIT CSAIL.

Richard Zhang Adobe Research Phillip Isola MIT CSAIL

Understanding Generalization in Deep Learning via Tensor Methods

Jingling Li1,3 Yanchao Sun¹

Tajji Suzuki^{2,3}

Furong Huang ¹Department of Computer Science, University of Maryland, College Park

Jiahao Su⁴ ²Graduate School of Information Science and Technology, The University of Tokyo Center for Advanced Intelligence Project, RIKEN Department of Electrical and Computer Engineering, University of Maryland, College Park

Challenge

Find complexity measures that:

Challenge

Find complexity measures that:

Are implicitly lowered by GD over NNs

Challenge

Find complexity measures that:

- Are implicitly lowered by GD over NNs
- Capture essence of natural data (allow its fit with low complexity)

Challenge

Find complexity measures that:

- Are implicitly lowered by GD over NNs
- Capture essence of natural data (allow its fit with low complexity)

Can ranks serve as measures of complexity?

Challenge

Find complexity measures that:

- Are implicitly lowered by GD over NNs
- Capture essence of natural data (allow its fit with low complexity)

Can ranks serve as measures of complexity?

Experiment

MNIST & FMNIST can be fit with low (hierarchical) tensor rank

Challenge

Find complexity measures that:

- Are implicitly lowered by GD over NNs
- Capture essence of natural data (allow its fit with low complexity)

Can ranks serve as measures of complexity?

Experiment

MNIST & FMNIST can be fit with low (hierarchical) tensor rank

Implicit lowering of ranks may explain generalization on natural data!

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies

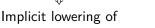
Implicit lowering of hierarchical tensor rank in HTF

Implicit lowering of long-range dependencies in CNNs!

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies

Implicit lowering of hierarchical tensor rank in HTF



long-range dependencies in CNNs!

CNNs are not suitable for long-range tasks

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies



Implicit lowering of hierarchical tensor rank in HTF

Implicit lowering of long-range dependencies in CNNs!

CNNs are not suitable for long-range tasks

• Conventional wisdom: due to expressiveness

(Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies

Implicit lowering of hierarchical tensor rank in HTF

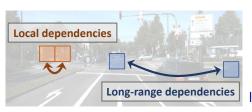
Implicit lowering of long-range dependencies in CNNs!

CNNs are not suitable for long-range tasks

- <u>Conventional wisdom</u>: due to expressiveness (Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)
- Our analysis: implicit regularization is also a cause

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies



Implicit lowering of hierarchical tensor rank in HTF

Implicit lowering of long-range dependencies in CNNs!

CNNs are not suitable for long-range tasks

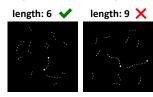
- <u>Conventional wisdom</u>: due to expressiveness (Cohen & Shashua 2017, Linsley et al. 2018, Kim et al. 2020)
- Our analysis: implicit regularization is also a cause

Can explicit regularization improve CNNs on long-range tasks?

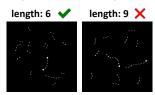
Experiment

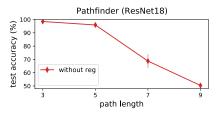
Experiment

Experiment



Experiment

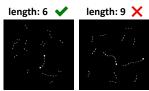




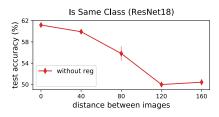
Countering Locality of CNNs via Regularization

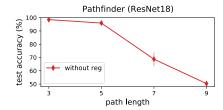
Experiment

Tasks: "Is Same Class" and Pathfinder (Linsley et al. 2018, Tay et al. 2021)



Regularization: promotes high hierarchical tensor rank

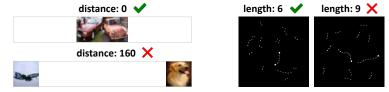




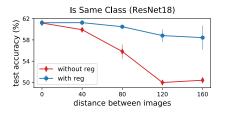
Countering Locality of CNNs via Regularization

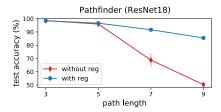
Experiment

Tasks: "Is Same Class" and Pathfinder (Linsley et al. 2018, Tay et al. 2021)



Regularization: promotes high hierarchical tensor rank

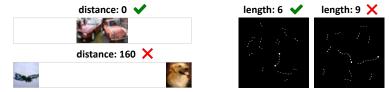




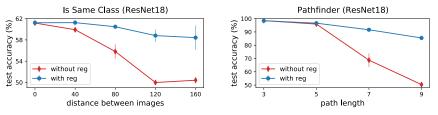
Countering Locality of CNNs via Regularization

Experiment

Tasks: "Is Same Class" and Pathfinder (Linsley et al. 2018, Tay et al. 2021)



Regularization: promotes high hierarchical tensor rank



Explicit regularization can improve CNNs on long-range tasks!

Outline

- 1 Implicit Regularization in Deep Learning
- 2 Matrix Factorization• Implicit Regularization ≠ Norm Minimization
- Tensor Factorization
- 4 Hierarchical Tensor Factorization
- 5 Implications for Modern Deep Learning
- 6 Conclusion

Goal: understand implicit regularization in deep learning

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

• Existing conjecture: implicit regularization minimizes norm

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

- Existing conjecture: implicit regularization minimizes norm
- We showed: it can drive all norms to ∞ while minimizing rank

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

- Existing conjecture: implicit regularization minimizes norm
- We showed: it can drive all norms to ∞ while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):

• We showed: implicit regularization lowers tensorial ranks

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

- Existing conjecture: implicit regularization minimizes norm
- We showed: it can drive all norms to ∞ while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):

We showed: implicit regularization lowers tensorial ranks

Implications to Modern Deep Learning:

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

- Existing conjecture: implicit regularization minimizes norm
- We showed: it can drive all norms to ∞ while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):

• We showed: implicit regularization lowers tensorial ranks

Implications to Modern Deep Learning:

 \bullet Parameterizing layers of NN as MF / TF/ HTF \implies compression

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

- Existing conjecture: implicit regularization minimizes norm
- We showed: it can drive all norms to ∞ while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):

• We showed: implicit regularization lowers tensorial ranks

Implications to Modern Deep Learning:

- ullet Parameterizing layers of NN as MF / TF/ HTF \Longrightarrow compression
- Rank lowering may explain generalization on natural data

Goal: understand implicit regularization in deep learning

Matrix Factorization (Linear NN):

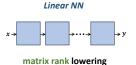
- Existing conjecture: implicit regularization minimizes norm
- We showed: it can drive all norms to ∞ while minimizing rank

Tensor and Hierarchical Tensor Factorizations (Non-Linear CNNs):

• We showed: implicit regularization lowers tensorial ranks

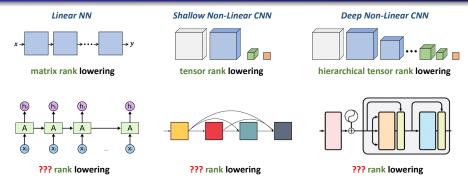
Implications to Modern Deep Learning:

- ullet Parameterizing layers of NN as MF / TF/ HTF \Longrightarrow compression
- Rank lowering may explain generalization on natural data
- One may counter locality of CNNs via explicit regularization!

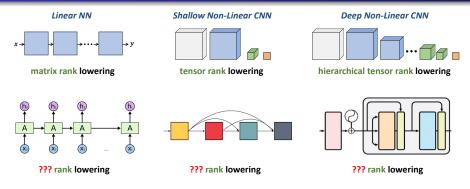


Deep Non-Linear CNN
...

hierarchical tensor rank lowering

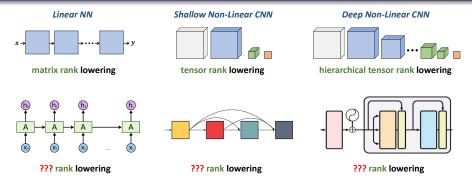


Hypothesis: in each NN architecture implicit regularization lowers corresponding notion of rank



Hypothesis: in each NN architecture implicit regularization lowers corresponding notion of rank

Discovering lowered notions of rank may pave way to:



Hypothesis: in each NN architecture implicit regularization lowers corresponding notion of rank

Discovering lowered notions of rank may pave way to:

Explaining generalization



Hypothesis: in each NN architecture implicit regularization lowers corresponding notion of rank

Discovering lowered notions of rank may pave way to:

- Explaining generalization
- Enhancing performance via regularization and architecture design

Thank You!

Work supported by:

Apple Scholars in Al/ML PhD fellowship, Google Research Scholar Award, Google Research Gift, the Yandex Initiative in Machine Learning, the Israel Science Foundation (grant 1780/21), Len Blavatnik and the Blavatnik Family Foundation, Tel Aviv University Center for Al and Data Science, and Amnon and Anat Shashua.