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Limitations:

Hard to formalize human preferences through labels
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Finetuning LMs via Preference Data

Preference-Based Finetuning

Limitations of SFT led to wide adoption of approaches using preference data

Train the LM to produce preferred responses based on pairwise comparisons

Main Approaches:

Reinforcement Learning1 Direct Preference Learning2

(e.g. Ouyang et al. 2022) (e.g. Rafailov et al. 2023)
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2 Maximize reward over unlabeled prompts via policy gradient methods

Expected reward for input     : x Vx(θ) = Ey∼πθ(·|x) [r(x,y)]

When preferences are labeled by humans: RFT              RLHF (Ouyang et al. 2022)

For our purposes,                  can be any arbitrary reward functionr(x,y)
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Overcoming Vanishing Gradients in RFT

Common Heuristics: Increasing learning rate, temperature, entropy regularization ❌

Observation: Initial SFT phase reduces number of inputs with small reward std

Importance of SFT in RFT pipeline: mitigates vanishing gradients

NarrativeQA
(train)

14 / 38



15 / 38

A Few SFT Steps on a Small Number of Samples Suffice



Limitation of Initial SFT Phase: Requires labeled data

15 / 38

A Few SFT Steps on a Small Number of Samples Suffice



Limitation of Initial SFT Phase: Requires labeled data

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT

15 / 38

A Few SFT Steps on a Small Number of Samples Suffice



Limitation of Initial SFT Phase: Requires labeled data

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT

A few steps of SFT on small # of labeled samples should suffice

15 / 38

A Few SFT Steps on a Small Number of Samples Suffice



Limitation of Initial SFT Phase: Requires labeled data

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT

A few steps of SFT on small # of labeled samples should suffice

Using 1% of labeled samples and 40% of steps for initial SFT 
allows RFT to reach roughly same reward as with “full” initial SFT
 

Result

15 / 38

A Few SFT Steps on a Small Number of Samples Suffice



Limitation of Initial SFT Phase: Requires labeled data

Expectation: If SFT phase is beneficial due to mitigating vanishing gradients for RFT

A few steps of SFT on small # of labeled samples should suffice

The initial SFT phase does not need to be expensive!

Using 1% of labeled samples and 40% of steps for initial SFT 
allows RFT to reach roughly same reward as with “full” initial SFT
 

Result
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∇Vx(θ) ≈ 0

Vanishing gradients in RFT are prevalent and 
detrimental to maximizing reward

Initial SFT phase allows overcoming vanishing 
gradients in RFT, and does not need to be expensive

Reward std is a key quantity to track for successful RFT

Expected gradient for an input vanishes in RFT 
if the input’s reward std is small
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y
+

y
−

x

Lx,y+,y−(θ) = "
(
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)

Intuitively,                        should increase and                should decrease πθ (y+|x) πθ (y−|x)

(e.g. Azar et al. 2024, Tang et al. 2024,  
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(Pal et al. 2024; Yuan et al. 2024, Rafailov et al. 2024, Tajwar et al. 2024, Pang et al. 2024, Liu et al. 2024)

Likelihood Displacement

However, the probability of preferred responses often decreases!

Limited understanding of why likelihood displacement occurs and its implications
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is similar in meaning to y+
z
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is opposite in meaning to z y
+

Likelihood Displacement
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Attributed likelihood displacement to:

Q: What is the simplest setting in which likelihood displacement occurs?

model capacity dataset size token overlap
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Prompt contains a statement from 
the Persona dataset (Perez et al. 2022)

Example: Is the following statement 
something you would say? “Doing bad 
things is sometimes necessary in order 
to accomplish important goals”

Preferred and dispreferred responses 
are synonyms of ”Yes” or “No”

Example: “Yes”, “Sure”, “No”, “Never”
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Setting: Train a (moderately aligned) language model to refuse unsafe prompts via DPO

Preference Dataset: Unsafe prompts from SORRY-Bench (Xie et al. 2024)
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unsafe prompt
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Judge Model

refusals > non-refusals
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For over 70% of prompts both responses are refusals 
(resembles “No” vs “Never” experiments)



Likelihood Displacement Can Cause Unintentional Unalignment

Likelihood displacement leads to unintentional unalignment!

Initial

DPO
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Theoretical Analysis of Likelihood Displacement: Approach

Goal: Characterize how                          changes during training

We track their evolution during training

Assumption: For simplicity, consider hidden embeddings as trainable parameters
(Suanshi et al. 2021, Zhu et al. 2021, Mixon et al. 2022, Ji et al. 2022, Tirer et al. 2023)

lnπθ(z|x)

response prompt

is determined by:lnπθ(z|x)

hidden embeddings hx,z<1
, . . . ,hx,z<|z|
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At any training step,                             decreases when the following are large:

Theorem: When does likelihood displacement occur? 

lnπθ (y+|x)

1
〈

Wy+ ,Wy−

〉

2
〈

Wz,Wy+ −Wy−

〉

for tokens z != y
+
,y

−

Intuition: similar preferences cause likelihood displacement
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Single Token Responses: Role of Token Unembedding Geometry

Theorem: Where does the probability mass go?

The log probability change of       is proportional to: z

〈

Wz,Wy+ −Wy−

〉

Explains why likelihood displacement can be catastrophic even in simple settings

Suppose that          and          consist of a single token y
+

y
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Token unembeddings encode semantics
(e.g. Mikolov et al. 2013, Park et al. 2024)
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+
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Definition: Centered Hidden Embedding Similarity (CHES) Score

CHESx(y+
,y−) :=

〈∑|y+|

k=1
h
x,y+

<k
︸ ︷︷ ︸

y
+ embeddings

,

∑|y−|

k′=1
h
x,y−

<k′

︸ ︷︷ ︸

y
− embeddings

〉

−

∥
∥
∥

∑|y+|
k=1 hx,y+

<k

∥
∥
∥

2

*The CHES score is model-dependent
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Our Theory: Indicates that a higher CHES score leads to more likelihood displacement

more similar preferences



Main Contributions: Likelihood Displacement

Likelihood displacement can be catastrophic 
and lead to surprising failures in alignment

Theory: Likelihood displacement is driven by 
the model’s embedding geometry

Mitigating likelihood displacement via 
data filtering
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Identifying Sources of Likelihood Displacement

Q: How indicative is the CHES score of likelihood displacement?

Llama-3-8B over UltraFeedback

CHES score identifies training samples causing likelihood 
displacement, whereas alternative measures do not

CHES Score

Edit Distance Similarity (Pal et al. 2024)

Hidden Embedding Similarity

*Similar results for OLMo-1B, Gemma-2B models
  and AlpacaFarm dataset
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Initial

DPO

Recall: Unintentional unalignment due to likelihood displacement experiments

DPO over samples with lowest 
length-normalized CHES score

DPO + SFT  (e.g. Liu et al. 2024)

DPO (gold data)

Removing samples with high CHES scores mitigates unintentional 
unalignment, and goes beyond adding an SFT term to the loss 
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Which Samples Have a High CHES Score?

CHES score ranking falls in line with intuition:
Samples with two refusal or two non-refusal 
responses tend to have a higher score than 
samples with one of each
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Conclusion: Likelihood Displacement

Theory & Experiments: Samples with high CHES scores 
lead to likelihood displacement 

Filtering out samples with high CHES score can mitigate 
unintentional unalignment

Our work highlights the importance of curating data with sufficiently 
distinct preferences, for which the CHES score may prove valuable

Likelihood displacement can be catastrophic and cause 
unintentional unlignment
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There are countless methods for aligning language models

RLHF
Ouyang et al. 2022

RLAIF
Bai et al. 2022

RAFT
Dong et al. 2023

IPO
Azar et al. 2023

DPO
Rafailov et al. 2023

SLiC-HF
Zhao et al. 2023

REBEL
Gao et al. 2024

SimPO
Meng et al. 2024

KTO
Ethayarajh et al. 2024
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