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Benchmark: GRUE  (Ramamurthy et al. 2023)

NarrativeQA  (many inputs with small reward std and low reward)

IMDB  (few inputs with small reward std and low reward)

Findings:

• Vanishing gradients are prevalent: 3 of 7 datasets contain 
considerable number of train inputs with small reward std

• RFT has limited impact on reward of inputs with small reward std

Do Common Heuristics Help?
Increasing learning rate, temperature, entropy regularization

❌

Observation: Initial SFT phase (commonly used in practice) 
reduces number of inputs with small reward std

Importance of SFT in RFT pipeline: It helps 
mitigate vanishing gradients

If SFT phase helps due to mitigating vanishing gradients for RFT

A few SFT steps on small number of labeled samples may suffice

Implication: Efficient Initial SFT Phase

1% of labeled samples for SFT lead to roughly 
same reward as “full” SFT
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v
Gradient of expected reward for an 
input vanishes if the input’s reward 
standard deviation is small

1 Theory: Vanishing Gradients ∇ ≈ 0

vVanishing gradients in RFT are prevalent 
and detrimental to maximizing reward

2 Experiments

v
Initial SFT phase can mitigate vanishing 
gradients in RFT, and does not need to 
be expensive

3 Possible Solutions

v

Supervised Finetuning (SFT): Minimize cross entropy 
loss over labeled examples

Terminology

Reinforcement Finetuning (RFT): Maximize reward via 
policy gradient

vReward standard deviation of individual 
inputs is a key quantity to track for 
successful finetuning

Takeaway
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Expected gradient for an input vanishes when reward std 
is small, even if reward is suboptimal

Language Model: Neural network trained to produce a 
distribution over text


