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How does the implicit bias of PG affect 
extrapolation to initial states unseen in training?

Implicit Bias of Policy Gradient in Linear Quadratic Control:
Extrapolation to Unseen Initial States
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Have Only 2 Minutes? Read This

Optimal Control (equivalent to Reinforcement Learning): 
Learn controller that minimizes cost over a dynamical system

Setting: Policy Gradient (PG) for Optimal Control

Main Question

?

Policy Gradient (PG): Parameterize controller (e.g. as neural 
network) and minimize cost via gradient descent

Issue of Prime Importance: Extrapolation to initial states 
unseen in training

Policy Gradient (PG) for the Linear Quadratic Regulator (LQR)

Theory: Extrapolation is Determined by Exploration

Experiments with Non-Linear Systems and Neural Network Controllers 

|   *Equal Contribution

Baseline Non-Extrapolating Controller

Intuition: Extrapolation is 
determined by exploration 
induced by the system from 
initial states seen in training

Pendulum ControlOur Theory: If a linear system induces 
exploration from initial states seen in training, 
then a linear controller typically extrapolates

Implicit Bias: Often multiple controllers minimize the training 
cost, so extrapolation is determined by an implicit bias of PG

Support theory for LQR and demonstrate its 
conclusions on non-linear systems and neural 
network controllers

Experiments

Extrapolation is determined by exploration induced by 
the system from initial states that are seen in training

Theory for the Linear Quadratic Regulator (LQR)

Linear System Quadratic Cost
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xh ∈ RD- state uh ∈ RM - control,

uh = Kxh

PG Training∇

Run gradient descent over cost for training set of initial 
states     :     S costS(K) = 1
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We study a practically motivated setting where multiple controllers minimize the training cost, and they differ in their extrapolation

Extrapolation Error

E(K) := 1

|U|

∑
x0∈U∥(A+BK)x0∥2

Measures suboptimality on a 
basis      of         (unseen subspace)  U S⊥

Optimality Condition

Controller      minimizes the training cost
if and only if

K

∥(A+BK)x0∥2 = 0 , ∀x0 ∈ S

K sends       to zerox0 minimizes training cost but has high extrapolation error

Extrapolation Requires Exploration Extrapolation in Exploration-Inducing Setting Extrapolation in Typical Setting

For states orthogonal to those reached during PG,
           and                   produce identical controlsKno-extKpg

There exist non-exploratory systems in which: 

E(Kpg) = E(Kno-ext)

There exist exploration-inducing settings in which 
PG leads to substantial extrapolation: 

E(Kpg) << E(Kno-ext)

*If the horizon       is infinite then E(Kpg) = 0
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*Extrapolation occurs w.h.p. if        is largeD

When       is random Gaussian, a single step of PG 
already leads to non-trivial extrapolation:

A

Proposition Proposition Theorem

H - horizon

Notation: Kpg - controller learned via PG   , lr - learning rate of PG   ,

Experiments: Phenomenon extends to non-linear 
systems with neural network controllers!

Quantifying Extrapolation

(analogous experiments for a 
quadcopter control problem)

control

state & cost

controller system

Linear Controller

sends states in      to zero 
Kno−ext

assigns null controls to states in U

S

D - state space dimension   , H- horizon

H


