Extrapolation to Unseen Initial States

Noam Razin*, Yotam Alexander™, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen

Have Only 2 Minutes? Read This

Setting: Policy Gradient (PG) for Optimal Control

Optimal Control (equivalent to Reinforcement Learning):
Learn controller that minimizes cost over a dynamical system

state & cost
@ system

controller 5 E
Policy Gradient (PG): Parameterize controller (e.g. as neural

control
network) and minimize cost via gradient descent

Issue of Prime Importance: Extrapolation to initial states
unseen in training

Implicit Bias: Often multiple controllers minimize the training
cost, so extrapolation is determined by an implicit bias of PG

Main Question

2 How does the implicit bias of PG affect
° extrapolation to initial states unseen in training?

Theory for the Linear Quadratic Regulator (LQR)

Eé? ? Extrapolation is determined by exploration induced by
oo thesystem from initial states that are seen in training

Support theory for LQR and demonstrate its
conclusions on non-linear systems and neural

network controllers

Implicit Bias of Policy Gradient in Linear Quadratic Control:
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Policy Gradient (PG) for the Linear Quadratic Regulator (LQR)

€9 Linear System
Xpi1 = Axp + Buy,

x5, € RP-state, u;, € R™-control

@ Quadratic Cost
thH_O x, Qxp, + u, Ruy,

H - horizon

Linear Controller
U, — KXh

V PG Training

Run gradient descent over cost for training set of initial
states S: costs(K) = i Yy cs Yoo X (Q + KTRK)x;,

We study a practically motivated setting where multiple controllers minimize the training cost, and they differ in their extrapolation

Optimality Condition

Controller K minimizes the training cost
ifandonly if ||(A + BK)xg||? =0,Vxg € S

%_J
K sends xgto zero

Quantifying Extrapolation

Extrapolation Error
E(K) = i Yy cull(A + BK)x|

Measures suboptimality on a
basis i/ of S+ (unseen subspace)

Baseline Non-Extrapolating Controller

sends states in S to zero
Kno—ext {

assigns null controls to states in U

minimizes training cost but has high extrapolation error

Theory: Extrapolation is Determined by Exploration

Intuition: Extrapolationis

. . initial state seen in training —
determined by exploration i oo B B N )
. State explore urin OlIC raalient
induced by the system from P & POIEY SHatiEn / 7
« oy . .« state unexplored during policy gradient
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Policy Gradient Iterate ¢ Controller
State Dynamics: A + BK ("

Non-Extrapolating Controller
State Dynamics: A + BK o ext

Policy Gradient Final Controller
State Dynamics: A + BK,y,

Notation: K, - controller learned via PG , Ir - learning rate of PG , D - state space dimension , H-horizon

Proposition

Extrapolation Requires Exploration

e For states orthogonal to those reached during PG,
K, and K, xt produce identical controls

e There exist non-exploratory systems in which:
g(Kpg) — g(Kno—ext)

Proposition

Extrapolation in Exploration-Inducing Setting

There exist exploration-inducing settings in which
PG leads to substantial extrapolation:

E(Kpg) << E(Kno-ext)
*If the horizon H is infinite then £(K ;) = 0

Theorem
Extrapolation in Typical Setting

When A israndom Gaussian, a single step of PG
already leads to non-trivial extrapolation:

2 [€(Kpg)] < E[E(Kpoext)] — Q11+ )

*Extrapolation occurs w.h.p. if D is large

Our Theory: If a linear system induces
exploration from initial states seen in training,
then a linear controller typically extrapolates

Experiments: Phenomenon extends to non-linear

systems with neural network controllers!

Pendulum Control Initial States
(analogous experiments for a
w
quadcopter control problem)
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Final States:
Non-Extrapolating Controller

Final States:
Policy Gradient Controller
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