Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

Noam Razin^{*}, Yotam Alexander^{*}, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen

conclusions on **non-linear systems and neural** network controllers

system

C Linear System

 $\mathbf{x}_{h+1} = \mathbf{A}\mathbf{x}_h + \mathbf{B}\mathbf{u}_h$ $\mathbf{x}_h \in \mathbb{R}^D$ - state , $\mathbf{u}_h \in \mathbb{R}^M$ - control

We study a practically motivated setting where multiple controllers minimize the training cost, and they differ in their extrapolation

Optimality Condition

Controller K minimizes the if and only if $\|(\mathbf{A} + \mathbf{B}\mathbf{K})\mathbf{x}_0\|$

 \mathbf{K} sends \mathbf{x}_0 to zero

Intuition: Extrapolation is determined by exploration induced by the system from initial states seen in training

Notation: \mathbf{K}_{pg} - controller learned via PG , lr - learning rate of PG , D - state space dimension , H - horizon

Proposition

Extrapolation Requires Exploration

- For states orthogonal to those reached during PG, \mathbf{K}_{pg} and $\mathbf{K}_{\mathrm{no-ext}}$ produce identical controls
- There exist non-exploratory systems in which:

 $\mathcal{E}(\mathbf{K}_{\mathrm{pg}}) = \mathcal{E}(\mathbf{K}_{\mathrm{no-ext}})$

Our Theory: If a linear system induces exploration from initial states seen in training, then a linear controller typically extrapolates

Experiments: Phenomenon extends to non-linear systems with neural network controllers!

*Equal Contribution

Quadratic Cost

 $\sum_{h=0}^{H} \mathbf{x}_h^{ op} \mathbf{Q} \mathbf{x}_h + \mathbf{u}_h^{ op} \mathbf{R} \mathbf{u}_h$

H - horizon

Policy Gradient (PG) for the Linear Quadratic Regulator (LQR)

🖾 Linear Controller

 $\mathbf{u}_h = \mathbf{K}\mathbf{x}_h$

Quantifying Extrapolation

e training cost
$$_0 \|^2 = 0, \forall \mathbf{x}_0 \in \mathcal{S}$$

 $\mathcal{E}(\mathbf{K}) := \frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_0 \in \mathcal{U}} \|(\mathbf{A} + \mathbf{B}\mathbf{K})\mathbf{x}_0\|^2$

Measures suboptimality on a basis \mathcal{U} of \mathcal{S}^{\perp} (unseen subspace)

Extrapolation Error

Theory: Extrapolation is Determined by Exploration

Proposition

Extrapolation in Exploration-Inducing Setting

There exist exploration-inducing settings in which PG leads to substantial extrapolation:

 $\mathcal{E}(\mathbf{K}_{\mathrm{pg}}) << \mathcal{E}(\mathbf{K}_{\mathrm{no-ext}})$

*If the horizon H is infinite then $\mathcal{E}(\mathbf{K}_{pg}) = 0$

Experiments with Non-Linear Systems and Neural Network Controllers

Pendulum Control

(analogous experiments for a quadcopter control problem)

★ target state

• initial state seen in training

initial state unseen in training

∇ PG Training

Run gradient descent over cost for training set of initial states \mathcal{S} : $cost_{\mathcal{S}}(\mathbf{K}) = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_0 \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_h^{\top} (\mathbf{Q} + \mathbf{K}^{\top} \mathbf{R} \mathbf{K}) \mathbf{x}_h$

Baseline Non-Extrapolating Controller

 $\boldsymbol{\beta}$ sends states in $\boldsymbol{\mathcal{S}}$ to zero

 $\mathbf{K}_{\mathrm{no-ext}}$

 \cdot assigns null controls to states in ${\cal U}$

minimizes training cost but has high extrapolation error

