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1) Implicit Regularization in Deep Learning (DL)

Tel Aviv University  *Equal contribution

I11) Beyond Matrix Factorization: Tensor Factorization (TF) V) Dynamics of Learning: Experiments

Deep neural networks (NNs) are typically overparameterized
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With “natural data” predictors found by gradient descent (GD) generalize well

Conventional wisdom: implicit regularization towards low “complexity” predictors

Goal: mathematically understand this implicit regularization

Challenge: lack complexity measures that capture essence of natural data

Tensor Completion: recover unknown tensor given subset of entries Experiment (Rank 5 Order 4 Tensor Completion)

Component norms during GD over TF with different init scales:

Can we characterize the implicit regularization in concrete settings?

II) Common Testbed: Matrix Factorization (MF)

Matrix Completion: recover unknown matrix given subset of entries
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d d’matrix completion ¥ prediction task from f1;:::;dg f1;::;;d'gto R

In many real-world scenarios matrices of interest have low rank

Matrix Factorization
Parameterize solution as product of matrices and fit observations with GD

21?14 L hidden dims do
?15(4]?]| = W, ¥ oo e % W, | = W, not necessarily
?lsl?|? constrain rank

MF ¥ solving matrix completion via linear NN (w/o explicit regularization!)

Past Work (e.g. Arora et al. 2019, Razin & Cohen 2020, Li et al. 2021)
In MF (with small init and step size) implicit reqularization minimizes rank

Limitations of Matrix Factorization

(1) Captures prediction over only 2 input variables (2) No non-linearity

We study tensor factorization — accounts for both (1) and (2)
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Tensor F rization .
EN50 a_CtO at.o | | | As Init ¥ 0 fewer components depart from zero
Parameterize solution as sum of outer products and fit observations with GD:
| X P, . Incremental learning of components leads to low tensor rank!
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V1) Tensor Rank as Measure of Complexity

(2) TF ¥ solving tensor completion via NN with multiplicative non-linearity
Our analysis: tensor rank captures the implicit regularization of a non-linear NN

Tensor Factorization Non-Linear Neural Network
input conv pool  SUM Can tensor rank serve as a measure of complexity for predictors?
= = =S (output)
+ + o 00 + — T \0 — o — e . .. . .
Experiment (Fitting Standard Datasets With Predictors of Low Tensor Rank)
linear activation product pooling

Dataset: Fashion-MNIST - (similar results for MNIST)

Razin & Cohen 2020: GD empirically minimizes tensor rank even when R Is large Compared against two randomized variants:

Question: can this empirical phenomenon be supported theoretically? (1) random images (same labels) (i) random labels (same images)

Tensor rank: min # of components required to express a tensor
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V) Dynamics of Learning: Theoretical Analysis 0.14- T = = o S —4— original train
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_ tensor rank
Interpretation

. . . . Original data fit far more accurately than random (leading to low test err)!
I N wh(t) evolves at a rate proportional to its size exponentiated by 2 2=N > 1 J y ( g )

I Momentum-like effect: components move slower when small and faster when large Standard datasets can be fit with predictors of low tensor rank!

I Small init =) Incremental learning of components =) low tensor rank

VII) Takeaway

Tensor rank may pave way to understanding:

Theorem above leads to:

Theorem (Rank 1 Trajectory)

I Implicit regularization of neural networks

If tensor completion has a rank 1 solution, then under certain technical conditions and
a sufficiently small init TF will reach it I Properties of real-world data translating It to generalization
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