

I) Implicit Regularization in Deep Learning

Neural networks (NNs) generalize well despite being overparameterized

Conventional Wisdom

Gradient descent (GD) induces an implicit regularization towards "simplicity"

Common testbeds for formalizing this intuition: matrix and tensor factorizations

II) Background: Matrix Factorization (MF)

Consider minimizing loss \mathcal{L} over matrices (e.g. matrix completion loss) MF: parameterize solution as product of matrices and minimize loss with GD

 $\min_{\{W_l\}_l} \mathcal{L}(W_L \cdots W_1)$

Past Work: Dynamical Characterization (Arora et al. 2019) $\sigma_{M}^{(r)}$ — r'th singular value of $W_{L:1} := W_{L} \cdots W_{1}$

Theorem: GD (w/ small step size) over MF leads to $\frac{d}{dt}\sigma_{M}^{(r)}(t) \propto \sigma_{M}^{(r)}(t)^{2-2/L}$

Implications:

- Singular values move slower when small & faster when large!
- \blacktriangleright Small init \implies incremental learning of singular values

Experiment: completion of low rank matrix via MF

Incremental learning of singular values leads to low matrix rank

Limitation of MF as theoretical model for NNs: lacks non-linearity

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Noam Razin Asaf Maman Nadav Cohen

truining crumpics

Linear NN $x \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_L \rightarrow y$

III) Background: Tensor Factorization (TF)

Consider minimizing loss \mathcal{L} over tensors (e.g. tensor completion loss)

Tensor rank: min # of components required to express a tensor

Past Work: Dynamical Characterization (Razin et al. 2021) $\sigma_{T}^{(r)} := \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n} \|$ — norm of *r*'th component

Dynamics structurally identical to that in MF

Component norms move slower when small & faster when large!

Experiment: completion of low tensor rank tensor via TF

Limitation of TF as theoretical model for NNs: lacks depth

IV) Hierarchical Tensor Factorization (HTF)

Accounts for both non-linearity and depth

Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018) Representation w/ few local components \implies low hierarchical tensor (HT) rank

Tel Aviv University

- TF: parameterize solution as sum of outer products and minimize loss with GD
 - $\min_{\{\mathbf{w}_r^n\}_{r,n}} \mathcal{L}\left(\sum_{r=1}^{R} \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N\right)$

Shallow Non-Linear Conv NN (CNN)

Theorem: GD (w/ small step size) over TF leads to $\frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-2/N}$

Incremental learning of components leads to low tensor rank

V) Analysis: Implicit Regularization to Low HT Rank

Our Work: Dynamical Characterization

VI) Application: Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018) HT rank measures long-range dependencies

Can explicit regularization improve CNNs on long-range tasks?

VII) Takeaways

 $\sigma_{H}^{(r)}$ — norm of r'th local component at a location, K - # axes of local component

Theorem: GD (w/ small step size) over HTF leads to $\frac{d}{dt}\sigma_{H}^{(r)}(t) \propto \sigma_{H}^{(r)}(t)^{2-2/K}$

Dynamics structurally identical to those in MF & TF

Local component norms move slower when small & faster when large!

Experiment: completion of low HT rank tensor via HTF

Incremental learning of local components leads to low HT rank!

Implicit lowering of HT rank in HTF Implicit lowering of long-range dependencies in CNNs!

Experiment: regularization promoting high HT rank

Locality of CNNs can be countered via explicit regularization!

Implicit reg in HTF lowers HT rank (just as in MF & TF it lowers notions of rank) This implies implicit reg towards locality in CNNs

Specialized explicit reg improves performance of CNNs on long-range tasks!