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I) Implicit Regularization in Deep Learning

Neural networks (NNs) generalize well despite being overparameterized

≫ # of 
training examples

# of 
learned weights

Conventional Wisdom
Gradient descent (GD) induces an implicit regularization towards “simplicity”

Common testbeds for formalizing this intuition: matrix and tensor factorizations

II) Background: Matrix Factorization (MF)

Consider minimizing loss L over matrices (e.g. matrix completion loss)

MF: parameterize solution as product of matrices and minimize loss with GD

min{Wl}l L
(
WL · · ·W1

)
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Past Work: Dynamical Characterization (Arora et al. 2019)

σ
(r )
M — r ’th singular value of WL:1 := WL · · ·W1

Theorem: GD (w/ small step size) over MF leads to d
dtσ

(r)
M (t) ∝ σ

(r)
M (t)2−2/L

Implications:

▶ Singular values move slower when small & faster when large!

▶ Small init =⇒ incremental learning of singular values

Experiment: completion of low rank matrix via MF

Incremental learning of
singular values leads to

low matrix rank

Limitation of MF as theoretical model for NNs: lacks non-linearity

III) Background: Tensor Factorization (TF)

Consider minimizing loss L over tensors (e.g. tensor completion loss)

TF: parameterize solution as sum of outer products and minimize loss with GD

min{wn
r }r ,n L

(∑R
r=1w1

r ⊗ · · · ⊗ wN
r
)

Tensor rank: min # of components required to express a tensor

TF
(sum of components)

Shallow Non-Linear Conv NN (CNN)
input conv

pool output

Past Work: Dynamical Characterization (Razin et al. 2021)

σ
(r )
T := ∥⊗N

n=1 wn
r ∥ — norm of r ’th component

Theorem: GD (w/ small step size) over TF leads to d
dtσ

(r)
T (t) ∝ σ

(r)
T (t)2−2/N

▶ Dynamics structurally identical to that in MF

▶ Component norms move slower when small & faster when large!

Experiment: completion of low tensor rank tensor via TF

Incremental learning of
components leads to

low tensor rank

Limitation of TF as theoretical model for NNs: lacks depth

IV) Hierarchical Tensor Factorization (HTF)

Accounts for both non-linearity and depth

Deep Non-Linear CNN

input conv
pool

output
conv pool

local TF
(sum of local components)

HTF

Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018)

Representation w/ few local components =⇒ low hierarchical tensor (HT) rank

V) Analysis: Implicit Regularization to Low HT Rank

Our Work: Dynamical Characterization

σ
(r )
H — norm of r ’th local component at a location , K — # axes of local component

Theorem: GD (w/ small step size) over HTF leads to d
dtσ

(r)
H (t) ∝ σ

(r)
H (t)2−2/K

▶ Dynamics structurally identical to those in MF & TF

▶ Local component norms move slower when small & faster when large!

Experiment: completion of low HT rank tensor via HTF

Incremental learning of
local components leads to

low HT rank!

VI) Application: Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)

HT rank measures long-range dependencies

Local dependencies

Long-range dependencies

Implicit lowering of
HT rank in HTF

⇕
Implicit lowering of

long-range dependencies in CNNs!

Can explicit regularization improve CNNs on long-range tasks?

Experiment: regularization promoting high HT rank
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Locality of CNNs can be countered
via explicit regularization!

VII) Takeaways

▶ Implicit reg in HTF lowers HT rank (just as in MF & TF it lowers notions of rank)

▶ This implies implicit reg towards locality in CNNs

▶ Specialized explicit reg improves performance of CNNs on long-range tasks!
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