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I) Implicit Regularization in Deep Learning lll) Background: Tensor Factorization (TF) V) Analysis: Implicit Regularization to Low HT Rank
Neural networks (NNs) generalize well despite being overparameterized Consider minimizing loss £ over tensors (e.g. tensor completion loss) Our Work: Dynamical Characterization
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» Dynamics structurally identical to that in MF VI) Application: Countering Locality of CNNs via Regularization
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» Component norms move slower when small & faster when large! Fact (Cohen & Shashua 2017, Levine et al. 2018)

HT rank measures long-range dependencies
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Implications: Limitation of TF as theoretical model for NNs: lacks depth Experiment: regularization promoting high HT rank
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Limitation of MF as theoretical model for NNs: lacks non-linearity Representation w/ few local components = low hierarchical tensor (HT) rank » Specialized explicit reg improves performance of CNNs on long-range tasks!
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