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I) Implicit Regularization in Deep Learning (DL)

DNNs generalize w/o explicit regularization when # of weights� training set size

Conventional wisdom: gradient descent (GD) induces an implicit regularization

Motivating example: in linear regression, when # weights > # training examples
GD initialized at 0 converges to min `2 norm solution

Widespread hope: GD in DL finds solutions minimizing some norm

argminw ‖w‖ s.t. w is global min

II) Case Study: Matrix Factorization

Matrix completion: recover low-rank matrix given subset of entries

Observations 𝑏!" !," ∈%

Parameterize solution as linear neural network and minimize `2 loss with GD:

Product matrix

Objective: minW1...WL

∑
(i , j)∈Ω

(
(WLWL−1 · · ·W1)ij − bij

)2

III) Open Question

Does the implicit regularization in matrix factorization minimize a norm?

Opposing Conjectures

I Gunasekar et al. 2017: nuclear norm1 is minimized

I Arora et al. 2019: no norm is minimized

1 Sum of singular values

IV) Our Main Contribution: Resolving Open Question

Theorem
There exist matrix factorization settings where:

I All norms (and quasi-norms) are driven towards∞
I Rank is essentially minimized

Implicit regularization in matrix factorization 6= norm minimization

V) Analysis: Implicit Regularization Can Drive All Norms to Infinity

A Simple Matrix Completion Problem

∗ 1

1 0

unobserved entry construction is easily generalized to 
arbitrary dimensions and different 
configurations of observed entries

What are the min norm solutions?

I Min nuclear/Frobenius/spectral norm solution⇐⇒ ∗ = 0

I Minimizing an arbitrary norm (or quasi-norm) requires value of ∗ to be bounded

When is rank minimized?

I When |∗| → ∞ distance from rank 1 is minimized

I When ∗ = 0 distance from rank 1 is maximal

We construct settings where norm and rank minimization are contradictory

Theorem
Under gradient flow (GD with learning rate→ 0), if det(WL:1(0)) > 0 (holds w.p. 0.5
over standard inits), then |∗| ≥ Ω(1/

√
loss(t)). This implies:

I ‖WL:1(t)‖ ≥ Ω(1/
√

loss(t)), for any ‖·‖

I Distance from rank 1 of WL:1 ≤ O(
√

loss(t))

GD drives all norms to infinity in favor of minimizing rank

Experiment
GD over the construction above, generalized to different matrix dimensions:

|∗
| Theory transfers to practice:

| ∗ | →∞

VI) Implicit Regularization = Rank Minimization?

Matrix factorizations correspond to linear neural networks:

In our construction: implicit regularization provably minimizes matrix rank

Arora et al. 2019: theory and experiments suggest this holds in general

Does rank minimization extend beyond matrix factorization (linear NN)?

Tensor factorizations correspond to non-linear neural networks:

Experiment
GD over tensor factorization for low-rank tensor completion:

linear model⇒ high rank

tensor factorizations (tf)⇒ low rank

In the experiments: implicit regularization minimizes tensor rank

Implicit rank minimization occurs in tensor factorization (non-linear NN)

Hypothesis
Implicit regularization in DL minimizes rank of input-output mapping

Rank minimization may be key to explaining generalization in DL

VII) Takeaway

To understand implicit regularization in deep learning:

I Language of standard norm regularizers might not suffice

I Developing notions of rank for input-output mappings of NNs may be key
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