We quantify the ability of Graph Neural Networks to model interactions between vertices

Our theory leads to a simple & efficient edge sparsification algorithm that outperforms alternative methods

On the Ability of Graph Neural Networks to Model Interactions Between Vertices

Noam Razin, Tom Verbin, Nadav Cohen Tel Aviv University

link to paper

1) Expressivity in Graph Neural Networks (GNNs)

Molecular Data – Graph Prediction

Existing Analyses of Expressivity: mostly focus on

Distinguishing non-isomorphic graphs (e.g. Xu et al. 2019, Morris et al. 2019)

Limitations of Existing Analyses

(1) Often treat asymptotic regimes of unbounded width or depth

(2) No formalization for ability of GNNs to model interactions

Q: how do graph structure and GNN size affect modeled interactions?

2) Formalizing Strength of Interaction via Separation Rank

For $f: (\mathbb{R}^D)^N \to \mathbb{R}$ and $\mathcal{I} \subseteq \{1, \ldots, N\}$:

<u>Usages</u>:

3) Analyzed GNN Architecture

Vast majority of GNNs follow message-passing paradigm

<u>Prior work</u>: studied interactions modeled by other NNs w/ poly non-linearity (e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, **R** et al. 2022)

GNNs are purposed for modeling interactions between vertices

Social Networks – Vertex Prediction

Fundamental Question: *expressivity* — which functions can GNNs realize?

Computability of graph properties (e.g. Chen et al. 2020, Garg et al. 2020)

Separation Rank: measure of interaction modeled between input variables

 $sep(f; \mathcal{I}) := min \ R \ s.t. \ f(x_1, \ldots, x_N) = \sum_{r=1}^R g_r(\{x_u\}_{u \in \mathcal{I}}) \cdot \overline{g}_r(\{x_v\}_{v \in \mathcal{I}^c})$

(1) **Entanglement** in physics (2) Analyses of various NN architectures

(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, **R** et al. 2022)

 $\mathcal{V} := \{1, \ldots, |\mathcal{V}|\} - \text{vertices of input graph}$

 $x_1, \ldots, x_{|\mathcal{V}|}$ — input vertex features

 $h^{(I,u)}$ — hidden embedding of $u \in \mathcal{V}$ at layer I

 $h^{(I,u)} = \mathsf{AGG}(\{W^{(I)}h^{(I-1,v)} : v \in \mathsf{neigh}(u)\})$

<u>Our theory</u>: message-passing GNNs w/ product aggregation

4) Theory: Quantifying Ability of GNNs to Model Interactions

Walk Index (WI)

Theorem

* Nearly matching lower bounds

Experiment: implications of theory apply to various GNNs (e.g. GCN & GIN)

5) Application: Expressivity Preserving Edge Sparsification

 $WI_{L-1}(\mathcal{I}) \coloneqq \# \text{ length } L - 1 \text{ walks from } C_{\mathcal{I}}$ $WI_{L-1,t}(\mathcal{I}) \coloneqq \# \text{ length } L - 1 \text{ walks from } \mathcal{C}_{\mathcal{I}} \text{ to } t \in \mathcal{V}$

For depth *L* GNN of width D_h , subset of vertices $\mathcal{I} \subseteq \mathcal{V}$, and target $t \in \mathcal{V}$

Sraph Prediction
NN;
$$\mathcal{I}) = D_h^{\mathcal{O}(\mathbf{WI_{L-1}(I)})}$$

Vertex Prediction $sep(GNN^{(t)}; \mathcal{I}) = D_{h}^{\mathcal{O}(\mathbf{WI}_{L-1,t}(\mathcal{I}))}$

Interaction GNNs model across partition is determined by walk index

Edge Sparsification: remove edges to reduce compute/memory costs

Theory: walk index of $\mathcal{I} \subseteq \mathcal{V}$ key for modeling interaction between \mathcal{I} & \mathcal{I}^{c}

(L – 1)-Walk Index Sparsification (WIS)

Idea: greedily prune edge whose removal harms interactions the least

<u>Algorithm</u>: until desired # edges are removed:

Per edge, compute tuple holding what the (L – 1)-walk indices of $\{1\}, \dots, \{|\mathcal{V}|\}$ will be if the edge is removed

Remove edge w/ maximal walk index tuple (by some order over tuples)

1-WIS: particularly simple & efficient implementation

Experiment: comparison of edge sparsification algorithms