We quantify the ability of
Graph Neural Networks to model
interactions between vertices
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outperforms alternative methods
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1) Expressivity in Graph Neural Networks (GNNs)

GNNs are purposed for modeling interactions between vertices
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Fundamental Question: expressivity — which functions can GNNs realize?

Existing Analyses of Expressivity: mostly focus on

Computability of graph properties
(e.g. Chen et al. 2020, Garg et al. 2020)

Distinguishing non-isomorphic graphs
(e.g. Xuetal. 2019, Morris et al. 2019)

Limitations of Existing Analyses

(1) Often treat asymptotic regimes of unbounded width or depth

(2) No formalization for ability of GNNs to model interactions
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Q: how do graph structure and GNN size affect modeled interactions?
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2) Formalizing Strength of Interaction via Separation Rank

Separation Rank: measure of interaction modeled between input variables

For f: (RPN = R and Z C {1,...,N}:

4 )
sep(f;Z) :=min Rs.t. f(xq,...,xn) = S0 1 9r ({Xu}uer) - 9r (1% }vero)
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Usages:

(1) Entanglement in physics (2) Analyses of various NN architectures
(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, R et al. 2022)

3) Analyzed GNN Architecture

Vast majority of GNNs follow message-passing paradigm

. ® V:={1 .. |V|} — vertices of input graph
““““ o' @
““““““““““““““ ® Xi,...,Xy — input vertex features
‘4— AGG S ‘4_ : .......... . . .
............................. ® hl"Y) — hidden embedding of u € V at layer /
......... o |
U e ® A _ AGG({ W(I)h(l—1,v) LV nelgh(u)})

Prior work: studied interactions modeled by other NNs w/ poly non-linearity
(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, R et al. 2022)

Our theory: message-passing GNNs w/ product aggregation
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4) Theory: Quantifying Ability of GNNs to Model Interactions

Walk Index (WI)

WI,_,(7) = #length L — 1 walks from C7

ZC
WI,_,,(7) =#length L — 1 walks from C7tot € V
C7 — boundary
Theorem
For depth L GNN of width D,,, subset of vertices 7 C },and target t € V
s N

Graph Prediction Vertex Prediction

. sep(GNN; T) = D,?(WIL_1(I)) sep(GNNW: T) = D,?(WIL_”(I)) )

* Nearly matching lower bounds

4 )

Interaction GNNs model across partition is determined by walk index

. .

Experiment: implications of theory apply to various GNNs (e.g. GCN & GIN)

5) Application: Expressivity Preserving Edge Sparsification

Edge Sparsification: remove edges to reduce compute/memory costs

Theory: walk index of Z C V key for modeling interaction between Z & Z°¢

/ (L - 1)-Walk Index Sparsification (WIS) \
|dea: greedily prune edge whose removal harms interactions the least

Algorithm: until desired # edges are removed:

= Per edge, compute tuple holding what the (L - 1)-walk indices of

{1}, .., {|V|} will be if the edge is removed

= Remove edge w/ maximal walk index tuple (by some order over tuples)

Q—WIS: particularly simple & efficient implementation /

Experiment: comparison of edge sparsification algorithms
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WIS outperforms existing methods while being simple & efficient




