Scalable Attentive Sentence-Pair Modeling via **Distilled Sentence Embedding**

Oren Barkan^{*}, Noam Razin^{*}, Itzik Malkiel, Ori Katz, Avi Caciularu, Noam Koenigstein Microsoft R&D ^{*}Equal Contribution

1) MOTIVATION: SPEEDING UP TRANSFORMERS

Large Transformer Models are Impractical for Production Systems:

- Current NLP Transformer models, e.g. BERT (Devlin et al. 2019), score a pair of sentences using multiple *cross-attention* operations.
- **Cross-attention**: each word in sentence Y attends all words in sentence Z and vice versa.
- Scoring a set of query-candidate sentences requires propagating all pairs throughout the whole network.

Enabling Fast Online and Offline Sentence-Pair Scoring:

• Replacing **cross-attention** operations with **self-attention** decouples the computation for each sentence. Decoupling allows fast online and offline sentence-pair scoring.

4) COMPUTATIONAL SPEEDUP

Online Query-Candidates Scoring:

DSE allows precomputing the candidates' sentence embeddings. Online scoring requires only a single BERT forward pass.

1 hour \rightarrow 0.2 seconds for 100K query-candidate pairs. \sim **13500x** speedup!

Offline All-Pairs Scoring:

Computing all sentence-pair scores requires only O(n) BERT forward passes, instead of $O(n^2).$

2) SETTING: SENTENCE-PAIR TASKS

Online Query-Candidates Scoring:

- Computing all scores for a new query sentence and an existing large candidates set.
- Highly relevant for search and text retrieval applications.

Offline All-Pairs Scoring:

Microsoft

- Computing similarity scores for all pairs of sentences in a large database.
- Usages in text-based recommender and retrieval systems.

3) DISTILLED SENTENCE EMBEDDING (DSE)

9.6 hours \rightarrow 37 seconds for 1M sentence-pairs. \sim **900x** speedup!

5) **PERFORMANCE EVALUATION**

Sentence-Pair Tasks:

• We evaluate DSE on sentence-pair tasks from the GLUE benchmark (Wang et al. 2018).

Model	Avg Performance	DSE Improvement
BERT	86.82	-4.6%
DSE	82.83	-
ELMo + Attn $(MT)^1$	76.45	8.3%

• Average relative degradation of only 4.6% compared to BERT. Significantly outperforms existing sentence embedding methods.

Model Description:

- DSE consists of a *student* self-attentive only BERT model ψ , and a low-cost similarity function f.
- ψ creates a sentence embedding for each input sentence separately. The final score is computed using f.
- **Knowledge Distillation** mitigates performance degradation. The *teacher* is the original cross-attentive BERT model.

Universal Sentence Embeddings:

- DSE can also be used to create general purpose sentence embeddings.
- Extracted embeddings are competitive with state-of-the-art methods on the SentEval benchmark (Conneau and Kiela 2018).

SentEval Benchmark

¹Peters et al. 2018

6) CONTRIBUTIONS SUMMARY

y, z - Pair of sentences R - True label T - Teacher score S - DSE score

• Significant speedup in online and offline query-candidate scoring, with a relatively small degradation in performance.

• Can be used to create high quality general purpose sentence embeddings.